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Studying these kinds of problems had led to a number of new exciting open 
questions in complexity theory and cryptography.

I’m going to tell you about two big areas related to this: the unitary synthesis 
problem, and unclonable cryptography.
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An n-qubit unitary is a 2n
✕ 2n  norm preserving matrix.
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Quantum preliminaries

Efficient quantum computation is a poly(n) sized quantum circuit consisting of a 
sequence of two-qubit unitary gates.

A
1

A
2

A
4

A
5

A
3



Quantum preliminaries

A “random” state refers to a Haar random vector from the unit ball in ℂ2  .
n



The unitary synthesis problem



Motivating question:

Can we relate the complexity of “quantum problems” to the complexity of 
“classical problems”?



Classical problems can typically be reduced to the task of computing some 
function,

f : {0, 1}* →{0, 1}*



The most general transformation that can be implemented on a quantum 
computer is called a unitary transformation.
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Query algorithms

A query algorithm Af is a sequence of unitaries, with superposition queries to the 
function f  in between.
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Unitary synthesis

Is there a universal, efficient, query algorithm A, such that for any unitary U, there 
exists a function f such that Af implements U?
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Unitary synthesis

Is there a universal, efficient, query algorithm A, such that for any unitary U, there 
exists a function f such that Af implements U?

polynomial depth
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Unitary synthesis and cryptography

Both directions of the unitary synthesis problem seem to have connections to 
quantum cryptography.  
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Single-copy pseudo-random states

A single-copy pseudo-random state family is a keyed collection of states {|𝜓
n,k
⟩}

n,k  

such that,

● (Efficiency) There is an efficient algorithm that outputs |𝜓
n,k
⟩ when run on 

input (1n, k) for n-bit key k.
● (Stretch) The number of qubits of |𝜓

n,k
⟩ is greater than n.

● (Pseudo-randomness) For all efficient adversaries A, the following holds
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k
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Unitary synthesis and cryptography

What computational power does the adversary A need in order to break the 
pseudo-randomness property of a single-copy pseudo-random state?

Currently we do not know.

If the unitary synthesis problem is resolved in the negative, then there exists 
constructions relative to oracles that can not be broken by an efficient adversary 
given oracle access to any classical problem.
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Unitary synthesis: what is known?

Not much is known about the complexity of unitary synthesis. 

Lower bound: You need at least 2 queries to the function [LMW’24].

Upper bound: You only need 2n/2 queries to the function [Rosenthal’21].



Related problem: state synthesis

In state synthesis, we want to design a fixed query algorithm that, on input 0n, 
queries a function to prepare a state |𝜓⟩.  
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Related problem: state synthesis

An efficient state synthesis algorithm (making O(n) queries) has been known since 
at least 2016.  



Related problem: state synthesis

An efficient state synthesis algorithm (making O(n) queries) has been known since 
at least 2016.  

We know how to do state synthesis efficiently only using a single query to a 
function [Rosenthal’23, INNRY’22].
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Unitary synthesis: what’s next?

There is no real consensus about what the resolution to the unitary synthesis 
problem should be.  

I personally think you shouldn’t be able to synthesize unitaries, but proving this is 
challenging, so I can’t say for sure how the proof would go.

Either way will be exciting and tell us about the interplay between quantum and 
classical complexity theory!
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The no-cloning theorem says that there is no algorithm that clones an unknown 
quantum state.

|𝜓⟩ |0⟩ →|𝜓⟩ |𝜓⟩ 

In the 1970’s, Stephen Wiesner imagined a use case: Money that no one can copy.
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Private-key quantum money [Wiesner’83]

Wiesner proved that you could get private-key quantum money with information 
theoretic security (against all adversaries, no assumptions needed)!

However it had a number of problems, the one we will focus on is the so-called 
“verifiability” problem.

This inspired “public-key” quantum money.
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Quantum lightning [Zhandry’17]

A quantum lightning scheme consists of the following algorithms:

● KeyGen(1n)→(sk, pk)
● Mint(sk)→(s, |𝜓
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Public-key quantum money

Quantum money and lightning have been notoriously difficult to construct!
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Beyond quantum money?

Public-key quantum money asks for unclonable states that are also publicly 
verifiable.  But…

We might also want unclonable states that

● Are an encryption of some classical data (Unclonable encryption [BL’19, 
AK’21, AKLLZ’22, AKL’23, AB’24])

● Act as signature keys (Tokenized signatures [BS’16, Shmueli’22])
● Allow us to execute arbitrary functions (Copy-protected software 

[Aaronson’09, AL’21, ALLZZ’21, BJLPS’21, CMP’24])
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Unclonable cryptography today

Despite lots of attention, we know little about unclonable cryptography!

The only successful instantiations have been in settings without public verification 
(private-key quantum money, unclonable encryption) where we can achieve 
information theoretic security using Wiesner’s original construction.

Constructing public-key quantum money in the plain model and proving security 
from a “well-founded” assumption is a major open problem!


