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Abstract

We prove a tight parallel repetition theorem for 3-message computationally-secure quantum
interactive protocols between an efficient challenger and an efficient adversary. We also prove
under plausible assumptions that the security of 4-message computationally secure protocols
does not generally decrease under parallel repetition. These mirror the classical results of Bellare,
Impagliazzo, and Naor [BIN97]. Finally, we prove that all quantum argument systems can be
generically compiled to an equivalent 3-message argument system, mirroring the transformation
for quantum proof systems [KW00, KKMV07].

As immediate applications, we show how to derive hardness amplification theorems for
quantum bit commitment schemes (answering a question of Yan [Yan22]), EFI pairs (answering
a question of Brakerski, Canetti, and Qian [BCQ23]), public-key quantum money schemes
(answering a question of Aaronson and Christiano [AC13]), and quantum zero-knowledge argument
systems. We also derive an XOR lemma [Yao82] for quantum predicates as a corollary.
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1 Introduction

In this work we study one of the most fundamental questions in theoretical cryptography: can we
transform a “weakly” secure construction of a primitive into one that is “truly” secure? A common
strategy for such a transformation is parallel repetition: if the adversary’s success probability against
the original construction is bounded away from 1, then the adversary’s success probability against the
repeated construction should tend to zero with the number of repetitions. In classical cryptography
this question is well-studied, beginning with the seminal work of Yao [Yao82, Lev87, GNW11] and
leading to a long sequence of works [BIN97, CHS05, Hai09, HPWP10, CL10, PV12, CP15, BHT20].
Hardness amplification is also an essential tool for bootstrapping circuit lower bounds (see [SV08]
and the references therein).

Our focus in this work is on hardness amplification for quantum cryptographic primitives; in
particular we focus on the following class of quantum interactive protocols between an efficient
challenger (specified as part of the protocol) and an efficient adversary indexed by a security
parameter 𝜆:

• 3-message: The adversary sends the first message, the challenger the second, and the adversary
the third. After the protocol ends, the challenger decides to accept or reject. All messages
may be quantum.

• Weakly computationally secure: No efficient (poly(𝜆)-size) adversary can cause the challenger
to accept with probability greater than (say) 1− 1

poly(𝜆) .

The security of many quantum cryptographic primitives — including quantum (non-interactive)
commitments, quantum money and 3-message quantum arguments — can be naturally formulated in
terms of the a quantum 3-message protocol associated with the primitive like above. This quantum
protocol is often called a security game.

Similarly to the classical setting, one would like a generic method for amplifying the security
of quantum cryptographic primitives. A natural approach is to repeat the construction in parallel;

2



the security of the repeated construction usually corresponds to the parallel-repeated security game.
Ideally, one would want the adversary’s maximum success probability in a repeated security game to
decrease exponentially with the number of repetitions.

Our first result is a tight parallel repetition theorem for all 3-message quantum protocols.

Theorem 1.1 (3-message efficient parallel repetition, informal). Let 𝜋 be a 3-message 𝛾-
computationally secure quantum protocol. Then the 𝑘-fold parallel repetition 𝜋⊗𝑘 is (𝛾𝑘 + negl(𝜆))-
computationally secure.

We prove Theorem 1.1 by identifying the key high level approach used in proving both the classical
Yao’s XOR lemma [Yao82, Lev87, GNW11] and classical tight 3-message parallel repetition theorem
of Canetti, Halevi, and Steiner [CHS05], and then instantiating this high level approach by designing
quantum components that work with an arbitrary quantum adversary. As one would expect,
handling quantum protocols and adversaries is much more challenging than classical: (1) the classical
reduction involves cloning of the adversary’s internal state during protocol execution, which may
be computationally infeasible or even information-theoretically impossible (due to entanglement
with the challenger); and (2) the classical analysis relies on conditional distributions which breaks
down in the quantum setting due to non-commutativity. To resolve these challenges, we combine
techniques from recent works on quantum rewinding [CMSZ22] and quantum algorithmic techniques
such as the quantum singular value transform [GSLW19], as well as additional new ideas to make
them compatible with our setting. We explain these in more detail in Section 2.

We stress that our reduction is uniform in the strongest possible sense: if an adversary uses
quantum advice |𝖺𝗎𝗑⟩ then the reduction uses quantum advice |𝖺𝗎𝗑⟩⊗𝑡 for some polynomial 𝑡.
Furthermore, 𝑡 = 1 is possible for any 𝒜 as long as |𝖺𝗎𝗑⟩ is an appropriate eigenstate. See Remark 2.1
for details.

On tightness of the reduction. We remark that 𝛾𝑘 + negl(𝜆) is likely the best general bound
that one could hope for. The 𝛾𝑘 term is inherent since if the best attack on the original protocol
has success probability 𝛾, then simply running this attack on each repetition independently yields
an attack achieving success probability 𝛾𝑘. The negligible term also cannot be eliminated under
reasonable assumptions. In particular, the classical 2-message counterexample by Dodis, Jain, Moran,
and Wichs [DJMW12] generalizes to the post-quantum setting, thus the negligible term is inherent
assuming existence of exponentially hard post-quantum extended second-preimage resistant hash
functions.

1.1 Applications of 3-message hardness amplification

Theorem 1.1 immediately implies hardness amplification for several quantum cryptographic primitives.

Quantum commitments. Bit commitments are a fundamental cryptographic primitive where a
sender can commit to a bit 𝑏 without revealing it at first (this is the hiding property), and later
can reveal the bit but without the ability to change the bit (this is the binding property). Recently
our understanding of commitment schemes in the quantum setting has considerably advanced.
In particular, there is a robust existential equivalence between commitments and many quantum
cryptographic primitives including EFI pairs, which are pairs of efficient mixed states that can
only be inefficiently distinguished [BCQ23]. Therefore, it is likely that commitments and EFI pairs
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play a similar “minimal assumption” role (analogous to one-way functions classically) to quantum
cryptography.

An important question that has remained open is whether the computational security of quantum
commitments (and friends) can be amplified. In other words, given an arbitrary quantum commitment
scheme where either the hiding or binding property holds with weak (computational) security, can
we generically transform it into another quantum commitment scheme where hiding and binding
hold with strong security? This question was explicitly raised by Yan [Yan22].

Our parallel repetition theorem for computationally secure protocols directly implies hardness
amplification for quantum bit commitments, and thus showing robustness of the existence of
commitments from a new angle.

Corollary 1.2 (Hardness amplification for commitments). There is a quantum commitment scheme
but only with computational weak hiding (or binding) security, if and only if there is a strong quantum
commitment scheme.

We argue this as follows: without loss of generality it suffices to consider noninteractive commit-
ment schemes using Yan’s compiler [Yan22]. The binding security of the noninteractive scheme can
be formulated in terms of the success probability of any efficient adversary in a 2-message security
game; correspondingly the security of the repeated scheme can be formulated in terms of any efficient
adversary’s success probability in the parallel repeated security game, which by Theorem 1.1 decays
to negligible at an exponential rate. Amplification of hiding can be achieved via flavor-switching
[Yan22, GJMZ23, HMY23]. We describe this in detail in Section 8.1.We also show how this can
be used to drastically simplify constructing commitments from hardness of decoding black hole
radiation, originally proven by Brakerski [Bra23], in Section 8.5.

Quantum Yao’s XOR lemma. By the equivalence of quantum commitments and EFI pairs, we
also obtain hardness amplification for EFI pairs, answering an open question of Brakerski, Canetti,
and Qian [BCQ23]. In fact, we can even use it to show polarization for EFI pairs (Corollary 8.8).

Corollary 1.3 (XOR lemma for EFI pairs). If there exists (an ensemble of) weak EFI pairs (𝜌0, 𝜌1)
that are statistically far but cannot be distinguished with advantage better than 𝜖, then the 𝑘-fold
XOR of (𝜌0, 𝜌1) cannot be distinguished with advantage better than 𝜖𝑘/2 + negl(𝜆). In particular, this
gives a (strong) EFI pair if 𝜖𝑘 is negligible.

We point out that from this and leveraging an equivalence between quantum state distinguishing
and quantum predicates, we can immediately derive a quantum analogue of Yao’s XOR lemma [Yao82],
which states that weak computational unpredictability of Boolean predicates (over some distribution
of inputs) is amplified when the results of several independent instances are XOR-ed together. A
quantum predicate can be defined as two orthogonal average-case inputs 𝜌+ (YES), 𝜌− (NO) with
𝜌+𝜌− = 0, and the goal of the predictor is to correctly predict the sign with advantage 𝜖. This
question was previously asked by Brakerski [Bra23] (private communication) and Colisson [Col19].

Corollary 1.4 (Quantum Yao’s XOR lemma). The 𝑘-fold XOR of an 𝜖-unpredictable quantum
predicate for 𝜌+, 𝜌− is (𝜖𝑘/2 + negl)-unpredictable.

To see a circuit lower bound application of this, we can naturally define “projection complexity
classes”, a quantum-input analogue of decision complexity classes. Then we have that for any such
class 𝖢 that is closed under composition with a polynomial fan-in XOR (like the analogue for 𝖯𝖲𝖯𝖠𝖢𝖤),
𝖢 is strongly hard-on-average against 𝖡𝖰𝖯 machines if and only if 𝖢 is weakly hard-on-average
against them.
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Quantum money. A public-key quantum money scheme consists of quantum states (called
quantum banknotes) that can be publicly verified by anyone with the public-key, yet remain compu-
tationally infeasible to clone. A major goal of quantum cryptography research has been to construct
public-key quantum money schemes with security based on well-understood assumptions. Aaronson
and Christiano [AC13] proved a per-key amplification for a special class of schemes called projective
money schemes, and asked whether strong hardness amplification is possible for quantum money
schemes. We prove a general amplification that applies to any public-key quantum money scheme:

Corollary 1.5 (Hardness amplification for quantum money). Public-key quantum money schemes
satisfying weak uncloneability exist, if and only if there exists a public-key quantum money scheme
(satisfying strong unclonability).

Similar to amplifying commitments, this also follows directly from the observation that the
security of a public-key quantum money scheme can be formulated in terms of a 2-message security
game, thus it immediately generalizes to e.g. quantum lightning and private-key quantum money.
We describe this in detail in Section 8.3.

Amplification of post-quantum security. We remark that, if the original protocol is classical,
then the repeated protocol is also classical. Hence Theorem 1.1 also implies a parallel repetition
theorem for general 3-message post-quantum protocols; this was not previously known.

1.2 Barrier for parallel repetition beyond 3-message protocols

We also show that our 3-message parallel repetition theorem (Theorem 1.1) cannot extend to
4-message protocols under reasonable cryptographic assumptions, even if we are restricted to
the post-quantum setting. This is a (post-)quantum analogue of the classical result by Bellare,
Impagliazzo and Naor [BIN97, Section 3.3]1.

Theorem 1.6 (Impossibility of parallel repetition, informal). If there is a post-quantum 𝑐-message
concurrent-secure many-to-many non-malleable commitment scheme, then for every polynomial 𝑘
there is a 2𝑐-message post-quantum interactive protocol such that the security of a 𝑘-fold repetition
of the protocol does not decrease compared to the original protocol.

For the special case of non-interactive commitments (𝑐 = 2), we would get a 4-message impossi-
bility. We note that while there are no known post-quantum secure non-interactive non-malleable
commitments, “pre-quantum” non-interactive non-malleable commitments can be constructed from
various subexponential hardness assumptions [KS17, BL18, GKLW21], and so we view this assump-
tion as plausible. Note that a weaker post-quantum one-to-one secure constant-round non-malleable
commitment scheme is known to exist assuming post-quantum one-way functions [LPY23], and this
suffices for a special case of 𝑘 = 2.

We note that classically, stronger impossibilities are known: there is a 4-message protocol
whose 𝑘-fold computational security cannot be shown to decrease with black-box reductions for any
polynomial 𝑘 [BIN97, Section 3.4], and there is an 8-message protocol whose 𝑘-fold computational
security is at least constant, regardless of proof techniques [PW12]. These might also generalize to

1This is essentially the same but one subtle difference is that our counterexample does not require setup. Using
setup in a counterexample is arguably problematic as pointed out in [PW12, Section 2.1]. Note that (post-quantum)
non-interactive non-malleable commitments with setup can be instantiated from much weaker assumptions, e.g. using
a non-malleable encryption or in the (quantum) random oracle model as was done in [BIN97].

5



the post-quantum setting, assuming strong but reasonable assumptions like post-quantum CCA-
secure non-interactive commitments and post-quantum constant-round universal arguments. We
consider this sufficient evidence to conjecture that parallel repetition does not amplify 4-message
(post-)quantum protocols, but we leave improving the impossibility for future work.

1.3 Round compression for quantum argument systems

An interactive argument is a form of interactive proof where the completeness and soundness
conditions hold with respect to computationally efficient provers. An important complexity measure
of interactive arguments (and interactive proofs in general) is the round complexity. One surprising
result in the theory of quantum interactive proofs, due to Kitaev and Watrous [KW00], is that all
(single-prover) quantum interactive proof systems (where soundness holds against computationally
unbounded adversaries) can be compressed to just three messages. We show the analogous statement
for quantum interactive arguments via the round compression technique of Kempe, Kobayashi,
Matsumoto, and Vidick [KKMV07]. Our technical contribution is to make the reduction efficient.

Theorem 1.7 (Round compression, informal). Let 𝐿 be a language with an 𝑚-message quantum
interactive argument with completeness 1 − 𝑐 and soundness error 𝑠 = 1 − 𝛿 for 𝑚 ≥ 3. Then
there exists a 3-message quantum interactive argument for 𝐿 with completeness 1− 2𝑐/(𝑚− 1) and
soundness error 1− 𝛿/(𝑚− 1)4. The verifier and communication complexity incur only a poly(𝑚)
multiplicative overhead.

To counteract the worse soundness error, we can again apply Theorem 1.1 to the compressed
protocol to obtain a 3-message interactive argument for 𝐿 with negligible soundness error. Combining
these two results, we obtain a general round-preserving soundness amplification theorem for quantum
arguments:

Corollary 1.8 (Round-preserving amplification for arguments). Let 𝐿 be a language with an
𝑚-message quantum interactive argument with completeness 1 − negl (resp., 1) and soundness
error 1− 1/poly. Then there exists a min{3,𝑚}-message quantum interactive argument for 𝐿 with
completeness 1− negl (resp., 1), negligible soundness error, and similar complexity.

We prove these formally in Section 7.We remark that the crucial aspect of Theorem 1.7 and
Corollary 1.8 is that they preserve the communication complexity and the verifier complexity of the
original protocol. (Indeed, a trivial round compression for argument systems that is not complexity-
preserving can be obtained by having the prover forward its input to the verifier.) We are not aware
of any classical analogue of this round compression result.

In Section 8.4, we note that similar techniques allow us to further compile any quantum argument
into to a (quantum communication) Σ-protocol [MW05], and thus starting from an honest-verifier
zero knowledge protocol, we can get a 3-message malicious-verifier zero knowledge protocol, albeit
the soundness becomes worse. We further discuss how to get back negligible soundness at the end of
Section 8.4.

Corollary 1.9 (Round compression of zero-knowledge protocols). For any language 𝐿 that admits an
honest-verifier quantum statistical (resp. computational) zero-knowledge protocol and computational
(resp. statistical) soundness, 𝐿 also admits a malicious-verifier public-coin statistical (resp. compu-
tational) zero knowledge protocol with 3 messages, and 1− 1/poly computational (resp. statistical)
soundness, and similar complexity.
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1.4 Related works

Prior works have derived quantum direct product theorems or quantum XOR lemmas in the query-
efficient (or communication-efficient) setting [AŠW06, She11, LR13]. Morally these are 2-message
(post-quantum) parallel repetitions. However, the query-efficient setting is usually weaker than our
time-efficient setting and uses drastically different (non-algorithmic) techniques. For the rest of the
discussion we focus on time-efficient hardness amplification.

In [BEM+23] a parallel repetition theorem for quantum canonical form commitments was proved,
but it only handled classical side information and furthermore only achieved a polynomial rate of
decay of the success probability in the repeated protocol. As a consequence, we also improve their
Theorem 6.8 such that any inverse polynomial fidelity (or any error that is inverse polynomially
bounded away from 1) suffices.

In the classical setting, parallel repetition for three-message arguments (or “weakly-verifiable
puzzles”) was studied by [BIN97, CHS05], with the latter showing an optimal exponential soundness
amplification. Our three-message parallel repetition result also follows the high-level proof strategy
of [CHS05] while borrowing insights from proofs of XOR lemma [Yao82, Lev87, GNW11]. Recent
works have observed that in some cases, the [CHS05] amplification result can be applied essentially
without modification in the quantum setting. Radian and Sattath [RS19] point out that [CHS05]
generalizes to handle 2-message post-quantum (classical communication) protocols.

Morimae and Yamakawa [MY22] extend this argument further, adapting [CHS05] to give a
parallel repetition theorem for 2-message quantum protocols of the following special form:

0. Both parties a priori agree on a parameter 𝑡.

1. The challenger generates a classical verification key 𝑘, then uses 𝑘 to generate 𝑡 copies of a
quantum “puzzle” state |𝗉𝗎𝗓⟩, which it sends to the adversary.

2. The adversary returns a classical answer 𝑘′.

3. The challenger accepts or rejects based on 𝑘, 𝑘′.

They use this result to argue that weak one-way state generators (OWSGs) imply OWSGs, analogous
to Yao’s amplification of one-way functions. Due to the restriction on the behavior of the challenger —
essentially, that its secret state is classical — this result does not suffice for parallel repetition of
general 2-message quantum protocols, and does not extend to 3-message protocols even with classical
communication. Furthermore, it always requires many copies of the adversary’s auxiliary input
whereas our reduction can be advice preserving for eigenstates.

In addition, neither commitments nor quantum money fall within the scope of their result. In the
commitment case, this is because both messages in the security game are quantum, and furthermore
a general quantum commitment does not have a classical verification key; indeed, the information
required to verify the commitment is typically entangled with the state sent to the adversary. For
quantum money, the issue is instead that the [MY22] reduction shows only that given an adversary
for the parallel repetition of a 𝑡-copy protocol, we obtain an adversary for a single repetition of the
corresponding 𝑡′-copy protocol for some 𝑡′ = 𝑡 · poly(𝜆). This corresponds to giving the adversary
multiple copies of the money state, which of course makes the cloning task trivial.

Our reductions share many techniques with prior works in quantum cryptographic reductions,
especially in the area of quantum rewinding [Wat09, CCY21, CMSZ22, LMS22]. Like the cited works,
we make extensive use of Jordan’s lemma and alternating sequences of projective measurements.
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In recent work by Lombardi, Ma, and Spooner [LMS22], they achieved expected polynomial time
quantum rewinding, in part by accelerating certain components of [CMSZ22] using the quantum
singular value transform (QSVT). In this work, we also make use of the QSVT, but for a quite
different purpose: coherent post-selection. Unlike in [LMS22], we crucially rely on the ability of the
QSVT to manipulate singular vectors while maintaining coherence between subspaces; see Section 2.1
for more details.
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2 Technical overview

2.1 2-message non-uniform parallel repetition

In this section, we give an informal proof sketch for the special case of taking a 2-fold parallel
repetition of a 2-message quantum protocol. This special case is easier to understand and cannot be
immediately handled by easy changes to [CHS05]. It turns out that the proof for this special case
also contains most of the main ideas in the proof for the general non-uniform reduction.

We begin with some notation. A challenger in a 2-message protocol is identified with a pair
(𝑉, 𝑃 ), for 𝑉 a unitary and 𝑃 a projector, and an adversary in a 2-message protocol is identified
with a pair (𝑈, |𝖺𝗎𝗑⟩), for 𝑈 a unitary and |𝖺𝗎𝗑⟩ a quantum input. There are three registers: 𝖠,𝖬,𝖢,
being the adversary’s register, the message register, and the challenger’s register respectively. We
can write the protocol as follows:

• (Challenge) The challenger initializes both 𝖬,𝖢 to |0⟩, and applies the unitary 𝑉 to registers
𝖬𝖢.

• (Response) The adversary applies some unitary 𝑈 to registers 𝖠𝖬, where 𝖠 initially contains
some “advice” state |𝖺𝗎𝗑⟩.

• (Decision) The challenger applies a projective measurement {𝑃, id− 𝑃} to registers 𝖬𝖢, and
accepts if and only if he gets outcome 𝑃 .

Without loss of generality, we assume all operations are unitaries or projective measurements since
we can expand the private registers 𝖢 and 𝖠 appropriately. A 2-fold parallel repetition of (𝑉, 𝑃 )
is simply (𝑉 ⊗2, 𝑃⊗2), acting on registers 𝖬1,𝖬2,𝖢1,𝖢2. For 𝑖 ∈ {1, 2}, we write 𝑉𝑖 to denote the
unitary that applies 𝑉 on registers 𝖬𝑖,𝖢𝑖; 𝑃𝑖 to denote the projective measurement on registers
𝖬𝑖,𝖢𝑖.

Suppose (𝑉, 𝑃 ) has computational soundness 𝜖+negl, and we would like to prove that (𝑉 ⊗2, 𝑃⊗2)
has computational soundness 𝜖2 + negl. Assume for the sake of contradiction that there is a 2-fold
adversary (𝑈, |𝖺𝗎𝗑⟩) that achieves an inverse polynomial (for simplicity) advantage over 𝜖2. That
is, the adversary is accepted with probability 𝛿2, where 𝛿 − 𝜖 is inverse polynomial. Our goal is to
construct an 1-fold adversary that is accepted by the original challenger with probability close to 𝛿.
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We first give a unified high level approach of the classical proof for both tight parallel repetition
[CHS05] and the XOR lemma [Yao82] (or Levin’s isolation lemma [Lev87, GNW11]). Later we will
extend this high level approach to the quantum setting. The main idea behind all these proofs is
similar, we construct a 1-fold adversary by simulating a second challenger with a suitable challenge.
Consider the following two cases.

(i) There exists a fixed challenge 𝑐2 such that running the 2-fold adversary on (𝑐, 𝑐2) outputs a
response that is accepted by the first repetition with probability ≥ 𝛿.

(ii) For every challenge in the second repetition, the adversary is accepted by the first repetition
with probability ≤ 𝛿.

If we are in case (i), then we can construct a non-uniform adversary by giving the 1-fold adversary
𝑐2 as advice. On the other hand, if we are in case (ii), then the 2-fold adversary is accepted by the
second repetition with probability ≥ 𝛿 whenever it breaks the first repetition. To see why this is the
case, let 𝐺1(𝑐), 𝐺2(𝑐) be the events that the adversary is accepted by the first/second repetition on
a random challenge 𝑐 respectively. Then by Bayes’ rule,

𝛿2 = Pr[𝐺1 ∧𝐺2] = 𝔼
𝑐1,𝑐2

[Pr[𝐺1] · Pr[𝐺2|𝐺1]] ≤ 𝛿 · 𝔼
𝑐1,𝑐2

[Pr[𝐺2|𝐺1]], (1)

implying that 𝔼𝑐2 [Pr[𝐺2|𝐺1]] ≥ 𝛿. Thus the algorithm for the 1-fold adversary is to simulate the
2-fold protocol, with a real challenger sampling 𝑐1 for the first repetition and the challenge 𝑐 in
the second repetition until the first repetition accepts, and then return the response to the second
challenger.

We now attempt to generalize this to the quantum setting. As a first attempt, a natural quantum
analogue of case (i) could be the condition

∃ |𝑚⟩ ,
⃦⃦
𝑃1𝑈𝑉1(|𝖺𝗎𝗑⟩𝖠 |𝑚⟩𝖬2

|0⟩𝖬1𝖢1𝖢2
)
⃦⃦2 ≥ 𝛿, (2)

which says that there is some message |𝑚⟩ we can insert into the second repetition so the adversary
wins the first repetition with probability at least 𝛿. The reduction for this case is straightforward:
put the real challenge in 𝖬1, run the adversary 𝑈 , then output 𝖬1; this succeeds with probability 𝛿
by equation (2). We will see soon that case (ii) requires a slightly different condition, but for now
we will proceed with equation (2) as stated. Equation (1) suggests the following natural reduction
for case (ii):

1. Initialize |0⟩𝖬1𝖢1
and simulate the challenger in the first repetition by running 𝑉1.

2. Put the real challenge in 𝖬2.

3. Run the 2-fold adversary 𝑈 on 𝖠𝖬1𝖬2.

4. “Post-select” on the event that the challenger accepts in the first repetition (i.e., on 𝑃1).

5. Output 𝖬2 as response.

Before the post-selection step, the state of the system is 𝑈𝑉1𝑉2 |𝖺𝗎𝗑⟩ |0⟩. We know that
‖𝑃1𝑃2𝑈𝑉1𝑉2 |𝖺𝗎𝗑⟩ |0⟩‖2 ≥ 𝛿2 by assumption (the adversary is accepted with probability ≥ 𝛿2),
and that ‖𝑃1𝑈𝑉1𝑉2 |𝖺𝗎𝗑⟩ |0⟩‖2 < 𝛿 by the negation of equation (2). Suppose that we are now able to
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post-select on 𝑃1; i.e., to prepare the state 𝑃1𝑈𝑉1𝑉2|𝖺𝗎𝗑⟩|0⟩
‖𝑃1𝑈𝑉1𝑉2|𝖺𝗎𝗑⟩|0⟩‖ . Then as in the classical case, we would

be done, since that state achieves success probability⃦⃦⃦⃦
𝑃2 ·

𝑃1𝑈𝑉1𝑉2 |𝖺𝗎𝗑⟩ |0⟩
‖𝑃1𝑈𝑉1𝑉2 |𝖺𝗎𝗑⟩ |0⟩‖

⃦⃦⃦⃦2
=
‖𝑃1𝑃2𝑈𝑉1𝑉2 |𝖺𝗎𝗑⟩ |0⟩‖2

‖𝑃1𝑈𝑉1𝑉2 |𝖺𝗎𝗑⟩ |0⟩‖2
≥ 𝛿2

𝛿
= 𝛿. (3)

How do we perform post-selection? Classically, this is achieved by rejection sampling.
As a seasoned reader might expect at this point, naïve rejection sampling does not immediately

generalize to the quantum setting. This is because measuring 𝑃1 disturbs 𝖬2, and it is not in general
possible to clone the state on 𝖬2; worse, it may be that this state is entangled with the challenger’s
private register 𝖢2. Indeed, for canonical form commitment schemes, 𝖬2 and 𝖢2 are highly entangled,
and the challenger will later check for the presence of entanglement.

Attempt: Alternating projectors. Classical rejection sampling can be thought of as a form of
rewinding. Hence a natural first attempt is to try to apply recent quantum rewinding techniques
[Wat09, CCY21, CMSZ22, LMS22]. Following these works, we can implement a form of post-selection
without cloning by alternating 𝑃1 (the first repetition accepting) with the projective measurement
𝑄1 := (𝑈𝑉1) |0⟩⟨0|𝖬1𝖢1

(𝑈𝑉1)
† (the first repetition being initialized correctly) until 𝑃1 accepts.

There are a few issues with this attempt. Alternating projector algorithms can be analyzed via
the Jordan (singular value) decomposition of 𝑃1𝑄1 =

∑︀
𝑖 𝜍𝑖 |𝑤𝑖⟩⟨𝑣𝑖|. Before the post-selection step,

the state is clearly in 𝑄1, and so it can be written as 𝑈𝑉1𝑉2 |𝖺𝗎𝗑⟩ |0⟩ =
∑︀

𝑖 𝛼𝑖 |𝑣𝑖⟩. For simplicity
assume for now that we are able to rotate all the singular vectors and the singular values are all
non-zero, then the output state of the alternating projectors will be∑︁

𝑖:𝜍>0

𝛼𝑖 |𝑤𝑖⟩ ⊗ |𝜍𝑖⟩ ,

where |𝜍𝑖⟩ is the alternating projection history register that only depends on the singular value 𝜍𝑖
(which may be subnormalized). The presence of the history register is problematic since tracing it
out amounts to measuring the singular value 𝜍𝑖. Since this measurement is unlikely to commute with
𝑃2, we cannot argue that the success probability is at least 𝛿 as above. To avoid this problem, we
would need to uncompute the history register, which we do not know how to do.

Even if we ignore this issue, and assume we can somehow uncompute the history to obtain the
state

|𝜓⟩ =
∑︁
𝑖:𝜍𝑖>0

𝛼𝑖 |𝑤𝑖⟩ ,

we still would not be able to say that the adversary is accepted with high probability. Recall that
our “target” state is

𝑃1𝑈𝑉1𝑉2 |𝖺𝗎𝗑⟩ |0⟩
‖𝑃1𝑈𝑉1𝑉2 |𝖺𝗎𝗑⟩ |0⟩‖

≈
∑︁
𝑖

𝜍𝑖√
𝛿
𝛼𝑖 |𝑤𝑖⟩ . (4)

The best bound we can get (via the triangle inequality and equation (3)) is

‖𝑃2 |𝜓⟩‖ >
√
𝛿 −

⃦⃦⃦⃦
⃦𝑃2

∑︁
𝑖:𝜍𝑖>0

(︂
1− 𝜍𝑖√

𝛿

)︂
𝛼𝑖 |𝑤𝑖⟩

⃦⃦⃦⃦
⃦ ,

which may be trivial (e.g. if 𝛼𝑖 ≈ 1 for 𝜍𝑖 ≪
√
𝛿). Note that this last term can be shown to be

non-negative in the classical case, but this could fail quantumly due to the possibility of destructive
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interference with respect to 𝑃2. Therefore, we cannot hope to simply improve the bound on the
probability without changing the state |𝜓⟩ itself.

Solution: QSVT. To summarize, the alternating projectors approach suffers from two issues:
(a) loss of coherence due to explicit computation of 𝜍𝑖, and (b) incorrect weighting of different singular
vectors. To solve both of these issues, we make use of a more sophisticated quantum algorithmic
tool, the quantum singular value transformation (QSVT) [GSLW19]. Roughly, the QSVT enables
efficient, coherent transformations of the form∑︁

𝑖

𝛼𝑖 |𝑣𝑖⟩ →
∑︁
𝑖

𝛼𝑖𝑓(𝜍𝑖) |𝑤𝑖⟩

for low-degree real polynomials 𝑓 with |𝑓(𝑥)| ≤ 1 when |𝑥| ≤ 1. We observe that our post-selection
task corresponds to 𝑓(𝜍) = 𝜍/

√
𝛿. Then Gilyen et al. [GSLW19, Theorem 17] show how to construct a

low-degree function 𝑔 which does satisfy the boundedness conditions, and which approximates 𝜍/
√
𝛿

on the range [0,
√
𝛿]. Applying the QSVT with respect to this 𝑔 achieves the necessary post-selection,

provided the spectral norm (maximum singular value) of 𝑃1𝑄1 is bounded by
√
𝛿. Furthermore, the

reduction goes through as long as the approximation error is ≪ 𝛿 − 𝜖.
Now we want a promise that all of the singular values of 𝑃1𝑄1 are at most

√
𝛿 in order to satisfy

the necessary boundedness conditions. To achieve this, we simply change the the condition for case
(ii) to be that the singular values of 𝑃1𝑄1 are bounded by

√
𝛿, and thus in this case we can safely

apply QSVT to approximately post-select. However, we note that the negation of this condition is
no longer equation (2), as 𝑃1𝑄1 might have a large singular value corresponding to a state that does
not come from a state of the form |𝖺𝗎𝗑⟩𝖠 ⊗ |𝑚⟩𝖬2

.
Nevertheless, we can “fix” case 1 by taking advantage of non-uniformity. Suppose that 𝑃1𝑄1 has

some singular value 𝜍𝑖 larger than
√
𝛿, and let |𝑣𝑖⟩𝖠𝖬1𝖢1𝖬2

be a corresponding right singular vector.
Since |𝑣𝑖⟩ is in 𝑄1, 𝑈 † |𝑣𝑖⟩ = (𝑉1 |0⟩𝖬1𝖢1

)⊗ |𝜓⟩𝖠𝖬2
for some advice state |𝜓⟩. Then⃦⃦

𝑃1𝑈(𝑉1 |0⟩𝖬1𝖢1
) |𝜓⟩𝖠𝖬2

⃦⃦2
= ‖𝑃1 |𝑣𝑖⟩‖2 = 𝜍2𝑖 ≥ 𝛿.

That is, in case (i) the adversary (𝑈, |𝜓⟩) achieves success probability 𝛿, which completes the proof in
the non-uniform case. Note that, unlike in the classical case, |𝜓⟩ may be entangled across 𝖠 and 𝖬2.

Extension to 𝑘-fold repetition. In the classical setting for general 𝑘, we have 𝑘 cases as follows.
Let 𝐺𝑖 be the event that the adversary wins the 𝑖-th repetition of the protocol, and suppose that
Pr[𝐺𝑘] ≥ 𝛿𝑘. It is straightforward to generalize the above to see that there exists some 𝑗 ∈ [𝑘] and
𝑐𝑗+1, ..., 𝑐𝑘 such that

Pr[𝐺𝑗 | ∧𝑗−1𝑖=1 𝐺𝑖, 𝑐𝑗+1, ..., 𝑐𝑘] ≥ 𝛿,
and we can follow the same rejection sampling strategy as above.

In the quantum setting, we similarly generalize the projector 𝑄1 from the 2-fold case as

𝑄≤𝑗 := 𝑈𝑉1 . . . 𝑉𝑗 |0⟩⟨0|𝖬≤𝑗𝖢≤𝑗
(𝑈𝑉1 . . . 𝑉𝑗)

†,

and define 𝑃≤𝑗 := 𝑃1 . . . 𝑃𝑗 . By assumption, ‖𝑃≤𝑘𝑄≤𝑘 |𝖺𝗎𝗑⟩ |0⟩‖2 ≥ 𝛿𝑘, and so in particular the
spectral norm of 𝑃≤𝑘𝑄≤𝑘 is at least

√
𝛿𝑘. It follows that there is some 𝑗 ∈ [𝑘] such that

‖𝑃≤𝑗𝑄≤𝑗‖ ≥
√
𝛿𝑗 and ‖𝑃<𝑗𝑄<𝑗‖ ≤

√
𝛿𝑗−1 . (5)

Therefore, given as non-uniform advice a state |𝜓⟩ with ‖𝑃≤𝑗𝑄≤𝑗 |𝜓⟩‖ ≥
√
𝛿𝑗 , by applying the QSVT

with respect to 𝑃<𝑗𝑄<𝑗 as in case 2 above we obtain an adversary with success probability 𝛿.
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2.2 Uniform reduction

In the previous section, we made crucial use of non-uniformity to provide the adversary with an
index 𝑗 satisfying equation (5) and a vector |𝜓⟩ with ‖𝑃≤𝑗𝑄≤𝑗 |𝜓⟩‖ ≥

√
𝛿𝑗 . In this section, we will

describe how to efficiently prepare 𝑗, |𝜓⟩ from (polynomially many copies of) the adversary’s initial
state |𝖺𝗎𝗑⟩.

We will need to start by relaxing equation (5), as we cannot in general efficiently check the
spectral norm of an operator. We address this by observing that our spectral norm condition for
post-selection via the QSVT can be substantially weakened: it suffices for the input state to have
small (≪ 𝛿𝑘) amplitude on (right) singular vectors |𝑣𝑖⟩ of 𝑃<𝑗𝑄<𝑗 with singular value 𝜍𝑖 >

√
𝛿𝑗−1.

Our task then becomes, formally: find an index 𝑗 and state |𝜓⟩ such that (i) ‖𝑃≤𝑗𝑄≤𝑗 |𝜓⟩‖ ≥
√
𝛿𝑗 ,

and (ii) writing |𝜓⟩ =
∑︀

𝑖 𝛼𝑖 |𝑣𝑖⟩ where
∑︀

𝑖 𝜍𝑖 |𝑤𝑖⟩⟨𝑣𝑖| is the singular value decomposition of 𝑃<𝑗𝑄<𝑗 ,
we have

∑︀
𝑖,𝜍𝑖>

√
𝛿𝑗−1 |𝛼𝑖|2 ≪ 𝛿𝑘. This is in fact a quantum analogue of a main algorithmic task in

the preprocessing phase of [CHS05]. In more detail, the analogous classical task is to find 𝑗 and a
sequence of challenges 𝑐𝑗+1, . . . , 𝑐𝑘 such that, (i) after fixing challenges 𝑐𝑗+1, . . . , 𝑐𝑘 in repetitions
𝑗 + 1, . . . , 𝑘, the residual probability of winning the first 𝑗 repetitions is at least 𝛿𝑗 , and (ii) with
probability ≫ 1− 𝛿𝑘 over 𝑐𝑗 , after fixing 𝑐𝑗 , . . . , 𝑐𝑘 in repetitions 𝑗, . . . , 𝑘, the probability of winning
the first 𝑗 − 1 repetitions is at most 𝛿𝑗−1.

First attempt. Let |𝜓𝑘⟩ := 𝑈𝑉1 · · ·𝑉𝑘 |𝖺𝗎𝗑⟩ |0⟩. Recall that, by assumption, we have that
‖𝑃≤𝑘𝑄≤𝑘 |𝜓𝑘⟩‖ ≥

√
𝛿𝑘. For each 𝑗, let

∑︀
𝑖 𝜍

(𝑗)
𝑖 |𝑤

(𝑗)
𝑖 ⟩⟨𝑣

(𝑗)
𝑖 | be the singular value decomposition

of 𝑃≤𝑗𝑄≤𝑗 .
Let us suppose for now that we have access to the binary projective “singular value threshold”

measurement Π(𝑗) =
∑︀

𝑖,𝜍
(𝑗)
𝑖 >
√
𝛿𝑗
|𝑣(𝑗)𝑖 ⟩⟨𝑣

(𝑗)
𝑖 |, for each 𝑗.2 We do not know how to realize this

measurement efficiently, but it can be approximated in some sense [GSLW19, CMSZ22]. This will
introduce a number of technical complications that we address later; for now, we assume access to
the exact measurement. Observe that we can write condition (ii) equivalently as

⃦⃦
Π(𝑗−1) |𝜓⟩

⃦⃦2 ≪ 𝛿𝑘.
Our first attempt at a uniform reduction is as follows. We apply (Π(𝑘−1), 𝐼 −Π(𝑘−1)) to 𝑡≫ 1/𝛿𝑘

copies of |𝜓𝑘⟩. If we ever see the outcome Π(𝑘−1), the post-measurement state |𝜓𝑘−1⟩ is in Π(𝑘−1),
and so ‖𝑃≤𝑘−1𝑄≤𝑘−1 |𝜑⟩‖ >

√
𝛿𝑘−1, and we can then recurse on |𝜓𝑘−1⟩. Otherwise, since we never

see the outcome Π(𝑘−1), with high probability
⃦⃦
Π(𝑘−1) |𝜓𝑘⟩

⃦⃦2 ≪ 𝛿𝑘, and so we can output 𝑗 = 𝑘 and
|𝜓⟩ = |𝜓𝑘⟩. Finally, if we get to |𝜓1⟩, we can simply output 𝑗 = 1 and |𝜓⟩ = |𝜓1⟩.

Unfortunately, this approach only works for constant 𝑘. To see why, notice that to prepare a
single copy of |𝜓𝑗−1⟩ we may need 1/𝛿𝑘 copies of |𝜓𝑗⟩. Unlike in the classical setting, we cannot
in general clone |𝜓𝑗⟩. Hence the number of copies of |𝜓𝑘⟩ required (and the running time of the
algorithm) scales as Ω(1/𝛿𝑘

2
), which may be superpolynomial for 𝑘 = 𝜔(1).

Second attempt. To resolve this issue, we note that in order for the non-uniform reduction to
work, it suffices to simply produce 𝑗 along with any state in Π(𝑗) with a small enough overlap with
Π(𝑗−1), therefore in the case we measure 𝐼 −Π(𝑗−1), it suffices to recover a state from Π(𝑗) instead of
recovering exactly |𝜓𝑗⟩. This is reminiscent of the “state repair” problem encountered in quantum
rewinding [CMSZ22]; our algorithm will follow that template. In more detail, the reduction works as
follows.

2Unlike in the classical setting, it is important here that we do not actually measure the singular value, since this
would cause too much disturbance.
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1. Measure the input state |𝜓𝑘⟩𝖠 with Π(𝑘). If it rejects, start over with a fresh copy of |𝜓𝑘⟩.

2. Repeat for 𝑗 = 𝑘, ..., 2:

(a) Measure Π(𝑗−1) and Π(𝑗) in an alternating fashion for up to 𝑡≫ 1/𝛿𝑘 iterations.3 If Π(𝑗−1)

ever accepts, go to the next iteration of the loop (𝑗 − 1).

(b) Otherwise, keep performing alternating projections until Π(𝑗) accepts, then output 𝑗 and
𝖠 and abort.

3. Output 𝑗 = 1 and register 𝖠.

Using Jordan’s lemma, and via similar reasoning to [CMSZ22], it is possible to show that (i) because
at the beginning of the 𝑗-th loop iteration, the state is in Π(𝑗), the number of measurements performed
in step 2b is 𝑂(𝑡) in expectation; and (ii) if we never see Π(𝑗−1) in step 2a then with high probability
the state |𝜓⟩ output by the algorithm on termination satisfies

⃦⃦
Π(𝑗−1) |𝜓⟩

⃦⃦2 ≪ 𝛿𝑘.

Adapting to approximate POVMs. The algorithm described above is correct assuming access to
the projectors Π(𝑗). In reality, we can only approximate them using (e.g.) Marriott–Watrous [MW05].
Furthermore, this approximate implementation is not a projection but a POVM; equivalently, it is a
projection Π̃(𝑗) acting on the register 𝖠 and an auxiliary register 𝖶𝑗 that is initially set to |0⟩.

Following [CMSZ22], the natural approach to extend the algorithm above to this case is to simply
replace Π(𝑗−1) and Π(𝑗) measurements with their approximate counterparts, Π̃(𝑗−1) ⊗ |0⟩⟨0|𝖶𝑗

and
Π̃(𝑗) ⊗ |0⟩⟨0|𝖶𝑗−1

. The projection on the ancilla register for the other measurement aims to ensure
its correct initialization.

This approach almost works but for a subtle technical issue. Even though 𝖶𝑗−1 and 𝖶𝑗 will be
initialized to |0⟩, after applying the first two projections in step 2a, we no longer have any guarantees
about the ancilla registers. Therefore, even if we measure that Π̃ accepts, it does not imply that we
have a state close to Π since it could be that the ancilla registers were malformed.

As a starting point, let us first look at how well the previous algorithm works if we simply plug in
Π̃(𝑗)’s (we omit the zero projector on the ancillas to keep the notations simple). Since the ancillary
issue only arises after we perform two projections Π̃(𝑗−1) and Π̃(𝑗), we observe:

1. If Π̃(𝑗−1) accepts in the first iteration, we must still (approximately) have a vector in Π(𝑗−1) as
the ancilla is initialized to zero at the beginning.

2. Furthermore, the alternating projections can still estimate the singular value. If we, instead
of going to 𝑗 − 1 whenever Π(𝑗−1) accepts, estimate the singular value and only declare we
are in case 𝑗 when we are below some minuscule threshold, it turns out to still work. This is
because as long as the threshold is small enough, when we are below the threshold, by gentle
measurement, it must be the case that the auxiliaries are not too far from zero. Thus a small
singular vector between Π̃’s is also a relatively small singular vector between Π’s.

3. Now it remains to handle the last case where the first measurement rejects but the estimated
singular value is still higher than the threshold. The final observation is that in fact the
probability that we reach the last case is in fact bounded away from 1 for any starting state:

3Technically Π(𝑗−1) acts on an additional register 𝖢𝑗 . This is a minor point and does not really affect the algorithm
nor the analysis. We can simply initialize all 𝖢𝑗 ’s to 0 at the beginning and add them to 𝖠 before aborting.
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intuitively if the starting state has a large overlap with Π(𝑗−1) then the first clause catches it
with noticeable probability, otherwise the second clause catches it with noticeable probability.
Therefore, when we reach the last case, we can simply recover any state in Π(𝑗) again so that
we can restart from the beginning. Since the algorithm succeeds for any starting state with
some probability, even if in each iteration the starting state is different, we will still eventually
reach one of the two good cases with a sufficiently large number of trials.

Leveraging these three observations, we solve this final issue by modifying the loop (step 2) with
a more careful algorithm as follows:

(a) Repeat 𝑡≫ 1/𝜏 times for some inverse polynomial threshold 𝜏 = 𝛿𝑂(𝑘):

(i) Initialize 𝖶𝑗,𝑗−1 to zero. Measure (𝐼 − Π̃(𝑗−1)) ⊗ |0⟩⟨0|𝖶𝑗
. If the measurement rejects,

proceed to the next iteration of the outer loop (𝑗 − 1).

(ii) Otherwise, measure Π̃(𝑗) ⊗ |0⟩⟨0|𝖶𝑗−1
, (𝐼 − Π̃(𝑗−1)) ⊗ |0⟩⟨0|𝖶𝑗

in an alternating fashion
for (say) 𝑡2 iterations. Then, keep alternating until Π̃(𝑗) ⊗ |0⟩⟨0|𝖶𝑗−1

accepts. Let
|𝜑⟩𝖠,𝖶𝑗

|0⟩𝖶𝑗−1
be the post-measurement state.

(iii) Use the outcomes of the alternating measurements to compute an estimate 𝛾 of⃦⃦⃦
((𝐼 − Π̃(𝑗−1))⊗ |0⟩⟨0|𝖶𝑗

) |𝜑⟩ |0⟩𝖶𝑗−1

⃦⃦⃦2
. If 𝛾 is above 1 − 𝜏 , terminate the outer loop.

Otherwise, proceed to the next iteration of the inner loop.

(b) Abort without any outputs.

An additional key change is that we are now alternating Π̃(𝑗)⊗ |0⟩⟨0|𝖶𝑗−1
and (𝐼 − Π̃(𝑗−1))⊗ |0⟩⟨0|𝖶𝑗

.
We also use state repair again to recover a new state for the next iteration. We remark that in order
for the algorithm to work we also need to slightly shift the singular value threshold in each iteration,
but we refer the readers to the full proof for these technical details.

We now formalize the observations above to analyze this new algorithm. Note that if the first
application of (𝐼 − Π̃(𝑗−1))⊗ |0⟩⟨0|𝖶𝑗

rejects, it must be that the post-measurement state is in Π̃(𝑗−1)

because 𝖶𝑗 is initialized to |0⟩; this is not true for subsequent applications because the measurement
may have rejected due to a malformed ancilla.

To argue correctness, we consider two cases. The first case is when, in some iteration of the
inner loop, the estimate 𝛾 is above the threshold 1− 𝜏 . In this case we must show that the post-
measurement state 𝜌 = Tr𝖶𝑗

(|𝜑⟩⟨𝜑|) on 𝖠 is (almost completely) in Π(𝑗) and has very small overlap
with Π(𝑗−1). To see this, observe that by gentle measurement the state |𝜑⟩ is

√
𝜏 -close to a state

of the form |𝜓⟩𝖠 |0⟩𝖶𝑗
. The state |𝜓⟩ then has the property that |𝜓⟩ |0⟩𝖶𝑗

|0⟩𝖶𝑗−1
is 𝑂(

√
𝜏)-close

to both Π̃(𝑗) and 𝐼 − Π̃(𝑗−1). Since this latter state has ancillas initialized to zero, it follows that
Π̃(𝑗), Π̃(𝑗−1) approximate Π(𝑗),Π(𝑗−1) on this state, and so |𝜓⟩ (which is close to 𝜌) is close to both
Π(𝑗) and 𝐼 −Π(𝑗−1).

Otherwise, if 𝛾 is always below 1− 𝜏 , then in each iteration of the inner loop, we will terminate in
step (a)(i) with probability at least 𝜏 . It follows that, since 𝑡≫ 1/𝜏 , with overwhelming probability
the loop will terminate in one of these two cases.

Remark 2.1 (Advice preservation). We note that, while our reduction preserves uniformity, it is not
strictly advice-preserving (or constructive [BBK22]), as it requires many copies of the adversary’s
advice state.
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This is inherent for any quantum reduction whose success probability ought to be higher than
that of the adversary. Indeed, this is true even classically for randomized advice (and hence also for
quantum advice via purification): given an adversary which succeeds with probability 𝛿 over the
advice distribution, a black-box reduction given only one sample from the advice distribution cannot
succeed with probability greater than 𝛿 in general.

We remark that the only reason for requiring many copies of the advice is in order to obtain a
state in Π(𝑘) in step 1. Thus, if the advice state is already in Π(𝑘), one copy suffices.

2.3 Round compression

We analyze the soundness of the round compression transformation of Kempe et al. [KKMV07] when
applied to argument systems. At a high level, their transformation works by recursively converting
an (𝑟 + 1)-message protocol into an (𝑟/2 + 1)-message compressed protocol. In an honest execution,
the prover begins by simulating the original (𝑟 + 1)-message protocol until the 𝑟/2-th message,
and sends the original uncompressed verifier’s private registers to the challenger in the compressed
protocol. From there, the verifier flips a coin, deciding whether to continue by running the original
protocol forwards or backwards in time.

If the verifier decides to execute the protocol backwards in time, the honest prover and verifier
apply the inverse of uncompressed protocol, and at the end the verifier measures whether their
private register returns to the state |0⟩. On the other hand, if the verifier decides to execute the
protocol forwards, the honest prover and verifier execute the remainder of the uncompressed protocol
and the verifier checks the same predicate that the uncompressed verifier does at the end of the
uncompressed protocol.

Completeness is straightforward: the honest prover simply simulates the protocol using the
original prover and verifier up to the midpoint, and then cooperate with the verifier to compute the
protocol either in the forward or the backward direction. To show (computational) soundness, we
demonstrate an efficient reduction from an adversary for the compressed protocol to an adversary
for the uncompressed protocol. In particular, the adversary for the uncompressed protocol simulates
an interaction between the compressed adversary and the compressed verifier, conditioned on the
verifier executing the protocol backwards. The adversary can then measure the simulated verifier’s
register, and conditioned that measurement accepting, the adversary now has a good initial state
for the uncompressed protocol, and the state of the simulated verifier’s register is |0⟩, so it can be
discarded.

From there, the adversary sends their first message and continues by applying the inverse of
the compressed adversary until round 𝑟/2. After round 𝑟/2, they apply the same unitaries as the
compressed adversary, conditioned on the compressed verifier executing the protocol forward in
time. Assuming that the compressed adversary was accepted with probability (1− 𝜖), we show that
the state after simulating either the forwards or backwards protocol is (1 − 4𝜖)-close in squared
Bures distance to a state that is accepted by the challenger in both cases. Using the weak triangle
inequality for the squared Bures distance, we find that the state of the verifier at the end of the
protocol is (1− 16𝜖)-close in squared Bures distance to a state that is accepted by the challenger,
implying that the challenger accepts with probability 1− 16𝜖. The use of squared Bures distance,
instead of the more commonly-used trace distance, avoids a blowup from 𝜖 to

√
𝜖 in this step.

This process halves the number of rounds at a cost of mapping 1 − 𝜖 soundness to 1 − 𝜖/16.
Iterating this protocol log𝑚 times, where 𝑚 is the number of messages in the original protocol, we
arrive at a 3-message protocol with soundness 1− 𝜖/𝑚4.
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3 Preliminaries

3.1 Quantum information

A quantum register 𝖱 is a named finite-dimensional complex Hilbert space. We write 𝐿(𝖱) to denote
the set of linear transformations on 𝖱 and S(𝖱) to denote the set of density matrices on 𝖱 (i.e.
positive semi-definite and unit-trace operators). For a vector |𝜓⟩ ∈ 𝖱, we write 𝜓 to denote the
density matrix |𝜓⟩⟨𝜓|, and for vectors |𝜓⟩ , |𝜑⟩ ∈ 𝖱, we write ⟨𝜓|𝜑⟩ to denote the inner product. For
a vector |𝜓⟩ ∈ 𝖱, we write ‖|𝜓⟩‖ to denote the standard norm over 𝖱, i.e. ⟨𝜓|𝜓⟩. We write Tr(·) to
denote the trace and Tr𝖱 to denote the partial trace over a register 𝖱.

For a linear operator 𝑋 ∈ 𝐿(𝖱), let ‖𝑋‖∞ be its operator norm and ‖𝑋‖1 = Tr(
√
𝑋†𝑋) be its

trace norm. For two density matrices 𝜌, 𝜎 ∈ S(𝖱), let td(𝜌, 𝜎) = 1
2 ‖𝜌− 𝜎‖1 be the trace distance

between the two. We sometimes write 𝑋𝖱 to indicate that 𝑋 acts on 𝖱. All un-labeled operators
act on all registers that do not have an operator acting on them, and if an operator is associated
with specific registers, we drop the register subscripts for brevity.

A binary projective measurement is a pair (Π, 𝐼 −Π), where Π is an orthogonal projector. By
convention we refer to the outcome corresponding to Π as 1 and 𝐼−Π as 0. Since a binary projective
measurement is completely specified by Π, we often refer to such a measurement simply as Π.

Definition 3.1 (Eigenspace projectors). Let 𝐻 =
∑︀

𝑗 𝜆𝑗 |𝑗⟩⟨𝑗| be a Hermitian matrix. For 𝜅 ∈ ℝ,
we denote by Π𝐻

<𝜅 :=
∑︀

𝑗,𝜆𝑗<𝜅 |𝑗⟩⟨𝑗| the projector on to eigenspaces of 𝐻 with eigenvalue less than 𝜅.
Π𝐻
≥𝜅 is defined similarly.

3.2 Fidelity and Bures distance

An important tool used in the paper will be the quantum fidelity and the related squared Bures
distance. Given two quantum states 𝜌, 𝜎 ∈ S(𝖱), the fidelity between 𝜌 and 𝜎 is given by

F(𝜌, 𝜎) = Tr

(︂√︁√
𝜌𝜎
√
𝜌

)︂2

.

This definition of fidelity might be sometimes be referred to as the “squared” fidelity. The fidelity can
be related to the trace distance by a pair of inequalities called the Fuchs-van de Graaf inequalities.

Proposition 3.2 (Fuchs-van de Graaf inequalities). For all density matrices 𝜌 and 𝜎 over the same
Hilbert space, we have that

1−
√︀

F(𝜌, 𝜎) ≤ td(𝜌, 𝜎) ≤
√︀
1− F(𝜌, 𝜎) .

It is well known that the fidelity is a useful quantity when examining the effects of performing a
measurement on a quantum state. Specifically, the gentle measurement lemma gives a bound on the
trace distance a state can move after a measurement based on the probability of the measurement
accepting.

Proposition 3.3 (Gentle measurement lemma [Win99]). Given a pure state 𝜌 and a projector Λ, let

𝜌′ =
Λ𝜌Λ

Tr(Λ𝜌)

be the post-measurement state. Then F(𝜌′, 𝜌) = Tr(Λ𝜌). It follows from the Fuchs-van de Graaf
inequalities that td(𝜌′, 𝜌) ≤

√︀
1− Tr(Λ𝜌).
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Another way to view the trace of a projector applied to a state 𝜓 is as the fidelity with the
closest state in the +1-eigenspace of the projector. Formally we have the following lemma.

Proposition 3.4 (Projector to max fidelity [Wil17, Theorem 9.2.2]). For any projector Π and state
|𝜓⟩⟨𝜓|,

Tr(Π |𝜓⟩⟨𝜓|) = max
Tr(Π𝜎)=1

F(𝜎, |𝜓⟩⟨𝜓|)

The fidelity corresponds to a squared inner product between states. The squared Bures distance
is a related distance measure between two states 𝜌 and 𝜎, defined as

dBures(𝜌, 𝜎) = 2(1−
√︀
F(𝜌, 𝜎)).

Being a distance measure, the Bures distance obeys a weak triangle inequality.

Proposition 3.5 (Weak triangle inequality for Bures distance [CS15, Proposition 2.1]). Let 𝜌1, 𝜌2, 𝜌3
be three quantum states, then

dBures(𝜌1, 𝜌3) ≤ 2(dBures(𝜌1, 𝜌2) + dBures(𝜌2, 𝜌3)).

3.3 Quantum interactive protocols

A (2𝑟 + 1)-message quantum interactive protocol 𝜋 is specified by a quantum interactive algorithm
𝐶 (the “challenger”), which interacts with an arbitrary quantum interactive algorithm 𝐴 (the
“adversary”). An execution of 𝜋 consists of 𝑟 interactions, each one consisting of a (quantum) message
from the adversary followed by a (quantum) message from the challenger; and then a decision after
the adversary sends their final message to the challenger, wherein the challenger either accepts or
rejects.

In the following we give a detailed description of an interactive protocol and introduce the
notation for registers we use throughout the paper. A visual representation of a quantum interactive
protocol can be found in Figure 1.

The adversary in an interactive protocol starts with an initial private register 𝖠0, and an initial
(0-dimensional) message register 𝖱−1, and the challenger starts with an initial private register 𝖶0.4

Each interaction in an interactive protocol proceeds (without loss of generality) as follows:

1. The adversary applies a unitary 𝐴𝑖 on 𝖠𝑖𝖱𝑖 to obtain a state on registers 𝖠𝑖+1𝖬𝑖 and sends
the message register 𝖬𝑖 to the challenger.

2. The challenger then performs a unitary 𝐶𝑖 to registers 𝖬𝑖𝖶𝑖, to obtain a state over registers
𝖱𝑖𝖶𝑖+1, here 𝖱𝑖 represents the response register. The challenger sends 𝖱𝑖 to the adversary.

We use 𝖬𝑖 and 𝖱𝑖 to distinguish the messages sent by the adversary and challenger respectively.
In the special case where 𝑟 = 1 (i.e., a 3-message interactive protocol), once the adversary

prepares their initial state, both the adversary and challenger have a single unitary to apply. As a
result, we drop the round index and refer to the adversary and challenger unitaries as 𝐴 and 𝐶, and
the adversary’s initial state as |𝖺𝗎𝗑⟩.

4In the case of a non-uniform adversary, 𝖠0 may be initialized to an advice state |𝖺𝗎𝗑⟩, in which case 𝐴0 may be
taken to be the identity. For uniform adversaries we can assume that 𝖠0 is in the all-zero state.
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Adversary Challenger

|𝖺𝗎𝗑⟩𝖠𝟢

𝖠𝟣𝖬𝟢

𝐴0

𝖬𝟢

|0⟩𝖶𝟢

𝖶𝟢𝖬𝟢

𝐶0

𝖶𝟣𝖱𝟢

𝖱𝟢
𝖠𝟣𝖱𝟢

𝐴1

𝖠𝟤𝖬𝟣
𝖬𝟣

𝖬𝗋

𝐴𝑟

𝖠𝗋+𝟣𝖬𝗋

{𝐷, 𝗂𝖽 − 𝐷}

Figure 1: A 2𝑟 + 1-message quantum interactive protocol.

Without loss of generality, we assume that after the adversary has sent their final message, the
challenger performs some 2-outcome measurement, described by the POVM {𝐷, id−𝐷}, on 𝖬𝑟𝖶𝑟.
If the measurement outputs 𝐷, then the challenger accepts and otherwise the challenger rejects. In
this work, we focus on the soundness of an interactive protocol. We say that an interactive protocol
has soundness 𝑠 if for every polynomial time (in the security parameter 𝜆) adversary, the adversary
is accepted by the challenger with probability at most 𝑠(𝜆) + negl(𝜆).

Given an interactive protocol, 𝜋, we define the 𝑘-fold parallel repetition of the protocol, 𝜋⊗𝑘 to be
the protocol where the challenger and adversary execute 𝜋 𝑘-times in parallel. In 𝜋⊗𝑘, the challenger
performs the unitary 𝐶⊗𝑘𝑖 on round 𝑖 and measures the two outcome POVM {𝐷⊗𝑘, id−𝐷⊗𝑘}. This
means that the challenger in the 𝑘-fold parallel repetition only accepts if every decision POVM
accepts. We note that the adversary in the 𝑘-fold parallel repetition of the protocol may play a
correlated, or even entangled strategy across the 𝑘 copies of the protocol.

We use superscripts to denote the registers and unitaries applied by the individual repetitions
of the protocol, so the first message register 𝖬0 of the 𝑘-fold parallel repetition of 𝜋 consists of 𝑘
many registers 𝖬𝟢

𝑖 where each 𝖬𝟢
𝑖 is sent to the 𝑖’th repetition of the protocol, and similarly for

the registers 𝖶𝗃, and 𝖱𝗃. We assume that there is only one adversary private register.

4 Non-uniform parallel repetition of 3-message protocols

In this section, we prove the following non-uniform version of our main theorem.

Theorem 4.1. For any 3-message quantum interactive protocol 𝜋 with soundness 𝜖 against adversaries
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of size 𝑠, 𝜋⊗𝑘 has soundness 𝛿𝑘 against adversaries of size 𝑂
(︁
(𝜖−𝛿)

√
𝛿𝑘−1

log 𝛿 · 𝑠𝑘
)︁

for any 𝑘 and 𝛿 > 𝜖.
In particular, if a family of 𝜋 has soundness 𝜖 against non-uniform polynomial-time adversaries,

then 𝜋⊗𝑘 has soundness 𝜖𝑘 against non-uniform polynomial-time adversaries for any polynomial 𝑘.

Let (𝐴, |𝖺𝗎𝗑⟩) be an adversary for 𝜋⊗𝑘 that achieves success probability 𝛿𝑘. For a collection of
registers {𝖢𝑖}𝑖, let 𝖢 be the concatenation of all 𝖢𝑖, and 𝖢(≤𝑗) be the concatenation of the first 𝑗
many 𝖢𝑖. Let the following operators be the challenger unitaries 𝐶 and decisions 𝐷 that are only
concerned about the first 𝑖 repetitions of the protocol:

(︁
𝐶(≤𝑖)

)︁
𝖬𝟢

(≤𝗂)𝖶
(≤𝗂)
𝟢

=

⎛⎝ 𝑖⨂︁
𝑗=1

𝐶
𝖬𝗃

𝟢𝖶
𝗃
𝟢

⎞⎠⊗ id ,

(︁
𝐷(≤𝑖)

)︁
𝖬

(≤𝗂)
𝟣 𝖶

(≤𝗂)
𝟣

=

⎛⎝ 𝑖⨂︁
𝑗=1

𝐷
𝖬𝗃

𝟣𝖶
𝗃
𝟣

⎞⎠⊗ id .

Note that 𝐶(≤0) = 𝐷(≤0) = id. 𝐷(<𝑖), 𝐷( ̸=𝑖), 𝐷(>𝑖), etc. are defined similarly to be the restriction of
𝐷⊗𝑘 to registers that satisfy the condition in the superscript.

Imagine a prefix of the 𝑘-fold game, where the 𝑘-fold adversary plays their strategy against all
𝑘 challengers but only the first 𝑖 repetitions perform 𝐶 and measure 𝐷. Similar to [CHS05], our
strategy for constructing an adversary for the 1-fold game will be to find an index 𝑖 such that the
𝑖’th repetition has a high probability of accepting, conditioned on the first 𝑖− 1 repetitions accepting,
and then have the adversary “post-select” on the first 𝑖− 1 repetitions accepting. To that end, define
the following projectors

𝐺𝑖 =
(︁
𝐶(≤𝑘)

)︁†
𝐴†

𝖠1𝖱(≤𝑘)

(︁
𝐷(≤𝑖)

)︁
𝐴𝖠1𝖱(≤𝑘)

(︁
𝐶(≤𝑘)

)︁
. (6)

This further gives rise to the following POVM where we further enforce that the private registers of
the verifiers is correctly initialized to |0⟩.

̃︀𝐺𝑖 =
(︁
id⊗ ⟨0|

𝖶
(≤𝑖)
0

)︁
𝐺𝑖

(︁
id⊗ |0⟩

𝖶
(≤𝑖)
0

)︁
.

Crucially note that this operator only enforces the initialization of the first 𝑖 folds but permits
arbitrary initialization of the other (𝑘 − 𝑖) repetitions. In other words, its input registers are
𝖠𝟣,𝖱

(≤𝑘),𝖶
(>𝑖)
0 .

Observe that
⃦⃦⃦ ̃︀𝐺𝑖 |𝖺𝗎𝗑⟩

⃦⃦⃦2
exactly captures the probability of the success probability of winning

the first 𝑖 repetitions when initialized with |𝖺𝗎𝗑⟩, and thus
⃦⃦⃦ ̃︀𝐺𝑖

⃦⃦⃦2
∞

captures the maximum success
probability for the first 𝑖 repetitions over all possible initializations. The following corollary shows
that there does always exist a “good” index to put the real challenger, for a particular definition of
“good” that would suffice later for the reduction.

Fact 4.2 (Discrete intermediate value theorem). Let (𝑝0, ..., 𝑝𝑘) be a sequence of reals such that
𝑝0 ≤ 0 ≤ 𝑝𝑘. Then there exists an integer 1 ≤ 𝑖 ≤ 𝑘 such that 𝑝𝑖−1 ≤ 0 ≤ 𝑝𝑖.

Proof. Suppose this is not the case then we have 𝑝𝑖−1 ≤ 0 =⇒ 𝑝𝑖 < 0, and thus by induction,
𝑝𝑘 < 0, a contradiction.
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Corollary 4.3. There exists some 1 ≤ 𝑖 ≤ 𝑘 such that
⃦⃦⃦ ̃︀𝐺𝑖−1

⃦⃦⃦2
∞
≤ 𝛿𝑖−1 and

⃦⃦⃦ ̃︀𝐺𝑖

⃦⃦⃦2
∞
≥ 𝛿𝑖.

Proof. Apply Fact 4.2 to the sequence
{︂⃦⃦⃦ ̃︀𝐺𝑖

⃦⃦⃦2
∞
− 𝛿𝑖

}︂
𝑖

.

Since our reduction is non-uniform for now, we can assume that the adversary knows a good
index and starts with an advice state that certifies the largeness of

⃦⃦⃦ ̃︀𝐺𝑖

⃦⃦⃦
∞

. In order to leverage the

smallness of
⃦⃦⃦ ̃︀𝐺𝑖−1

⃦⃦⃦
∞

, we need to invoke the Quantum Singular Value Transform.

Theorem 4.4 (Uniform singular value amplification [GSLW19, Theorem 17 (rephrased)]). Let Π, ̃︀Π
be projectors and 𝛾 > 1 and 𝜇, 𝜈 ∈ (0, 12). Let ̃︀ΠΠ =

∑︀
𝑖 𝜍𝑖 |𝑤𝑖⟩⟨𝑣𝑖| be a singular value decomposition.

Then there is an 𝑚 = 𝑂( 𝛾𝜇 log
(︀𝛾
𝜈

)︀
) and efficiently computable Φ ∈ ℝ𝑚 such that

(︁
⟨+| ⊗ ̃︀Π≤ 1−𝜇

𝛾

)︁
𝑈Φ

(︁
|+⟩ ⊗Π≤ 1−𝜇

𝛾

)︁
=

∑︁
𝑖:𝜍𝑖≤ 1−𝜇

𝛾

𝜍𝑖 |𝑤𝑖⟩⟨𝑣𝑖| , where
⃒⃒⃒⃒
𝜍𝑖
𝛾𝜍𝑖
− 1

⃒⃒⃒⃒
≤ 𝜈

and where, for 𝜅 ∈ [0, 1] (using notation from Definition 3.1),

Π≤𝜅 :=
∑︁
𝑖:𝜍𝑖≤𝜅

|𝑣𝑖⟩⟨𝑣𝑖| = ΠΠΠ̃Π
≤𝜅2 and Π̃≤𝜅 :=

∑︁
𝑖:𝜍𝑖≤𝜅

|𝑤𝑖⟩⟨𝑤𝑖| = ΠΠ̃ΠΠ̃
≤𝜅2 .

Moreover 𝑈Φ can be implemented using a single ancilla qubit with 𝑚 uses of 𝐶Π𝑁𝑂𝑇 , 𝑚 uses of
𝐶̃︀Π𝑁𝑂𝑇 and 𝑚 single qubit gates.

Note that in the theorem statement, 𝜍𝑖 are the singular values of Π̃Π; the eigenvalues of ΠΠ̃Π,
used later in the Jordan decomposition, are obtained as 𝑝𝑖 = 𝜍2𝑖 . Applying 𝑈Φ to any pure state
“simulates” the boosted singular value transform up to a small error 𝜈. The following corollary makes
the error more convenient later in our proof of the main theorem.

Corollary 4.5. Let 𝜍𝑖 |𝑤𝑖⟩⟨𝑣𝑖|, ̃︀𝜍𝑖, 𝜇 and 𝜈 be as defined in Theorem 4.4. For any pure state |𝜓⟩, let

|̃︀𝜑⟩ =
⎛⎜⎝ ∑︁

𝑖:𝜍𝑖≤ 1−𝜇
𝛾

𝜍𝑖 |𝑤𝑖⟩⟨𝑣𝑖|

⎞⎟⎠ |𝜓⟩ ,
|𝜑⟩ =

⎛⎜⎝ ∑︁
𝑖:𝜍𝑖≤ 1−𝜇

𝛾

𝛾𝜍𝑖 |𝑤𝑖⟩⟨𝑣𝑖|

⎞⎟⎠ |𝜓⟩ .
Then |𝜑⟩ = |𝜑⟩+ |𝜈⟩ where ‖|𝜈⟩‖2 ≤ 𝜈.
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Proof. We simply verify by calculating

‖|𝜈⟩‖2 =
⃦⃦⃦
|𝜑⟩ − |𝜑⟩

⃦⃦⃦
2

=

⃦⃦⃦⃦
⃦⃦⃦ ∑︁
𝑖:𝜍𝑖≤ 1−𝜇

𝛾

(𝜍𝑖 − 𝛾𝜍𝑖) |𝑤𝑖⟩ ⟨𝑣𝑖|𝜓⟩

⃦⃦⃦⃦
⃦⃦⃦
2

=

⎯⎸⎸⎷ ∑︁
𝑖:𝜍𝑖≤ 1−𝜇

𝛾

|(𝜍𝑖 − 𝛾𝜍𝑖) ⟨𝑣𝑖|𝜓⟩|2

≤ max
𝑖:𝜍𝑖≤ 1−𝜇

𝛾

|𝜍𝑖 − 𝛾𝜍𝑖|

≤ max
𝑖:𝜍𝑖≤ 1−𝜇

𝛾

𝛾𝜍𝑖𝜈

≤ 𝜈 ,

where the second inequality is by the guarantee of the algorithm.

We are now ready to state and prove the main result of this section. In order to use this lemma
in Section 5, we introduce a parameter 𝜏 to account for a loss in the uniform reduction. For the
non-uniform case, it suffices to set 𝜏 = 1 since we can prepare the advice state without any loss.

Lemma 4.6. Let 𝑖 and |𝖺𝗎𝗑⟩ be an index and state such that
⃦⃦⃦
Π

̃︀𝐺𝑖−1

>𝛿𝑖−1 |𝖺𝗎𝗑⟩
⃦⃦⃦2

= 0 and

Tr
(︁ ̃︀𝐺𝑖 |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|

)︁
≥ 𝜏𝛿𝑖 for some 0 < 𝜏 ≤ 1. Then for any 0 < 𝜇 < 1

2 , there exists an adver-
sary that takes as input 𝑖, 𝜇, 𝛿, 𝜏 and |𝖺𝗎𝗑⟩ and is accepted by the 1-fold verifier with probability at
least (1− 2𝜇)2𝜏𝛿. The adversary’s running time is dominated by running the original 𝑘-fold prover
𝑂
(︁

𝑖

𝜇
√
𝛿𝑖−1

log 1
𝜇𝛿𝜏

)︁
times.

Proof. At a high level, the goal of the single-fold adversary will be to use Theorem 4.4 to coherently
do post selection such that the first (𝑖− 1) repetitions are accepted, in which case the 𝑖’th repetition
should also be accepted with decent probability by the theorem assumption.

Let 𝐴 be the unitary that the adversary performs on registers 𝖠𝖱(≤𝑘) in the 𝑘-fold game. Apply
Theorem 4.4 with the following projectors and parameters.

Π =
(︁
𝐶(<𝑖) ⊗ id

)︁(︁
id⊗ |0⟩⟨0|𝖶𝟢

(<𝑖)

)︁(︂(︁
𝐶(<𝑖)

)︁†
⊗ id

)︂
,

̃︀Π = (𝐴†
𝖠𝟣𝖱

(≤𝑘) ⊗ id)
(︁
𝐷(<𝑖) ⊗ id

)︁(︁
𝐴𝖠𝟣𝖱

(≤𝑘) ⊗ id
)︁
, (7)

𝛾 =
1− 𝜇√
𝛿𝑖−1

, (8)

𝜈 = 𝜇
√
𝜏𝛿 .

Let 𝑊 be the unitary satisfying the conclusions Theorem 4.4 for that choice of parameters. Note that
𝑊 acts on 𝖠, the 𝑘-fold adversaries private register, 𝖶(<𝑖)

1 , the (𝑖− 1) many simulated challengers’
private workspaces after sending the challenges, 𝖱(≤𝑘), the response registers for all 𝑘 challengers
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(which 𝐴 expects to act on), and an ancilla register 𝖯, which will be projected onto the |+⟩⟨+|
state. Now consider the following prover for the 1-fold game (the challenger’s actions are included in
monospace font to aid understanding).

Algorithm 1. Non-uniform adversary 𝖠𝗆𝗉 for the 1-fold protocol

Input: Quantum registers 𝖠𝖬
(≤𝑘)
0 𝖶>𝑖

0 , index 𝑖, and slackness parameter 𝜇, and black-box
oracle access to 𝐴,𝐶,𝐷.

1. Initialize registers 𝖶(<𝑖)
0 to |0⟩, the private workspace registers for the first (𝑖−1) simulated

challengers.

2. Send 𝖬𝑖
0 to the challenger as the first message.

(Challenger performs 𝐶𝖶𝑖
0𝖬

𝑖
0
and sends 𝖱𝗂 back.)

3. Perform 𝐶 (̸=𝑖) on registers 𝖶0𝖬
(̸=𝑖)
0 to get a state on 𝖶1𝖱

(̸=𝑖).

4. Create ancilla register 𝖯 initialized in |+⟩𝖯.

5. Perform 𝑊
𝖠𝖶

(<𝑖)
1 𝖱(≤𝑘)𝖯

as defined above.

6. Perform 𝐴𝖠𝖱(≤𝑘) .

7. Measure 𝐷(<𝑖) ⊗ |+⟩⟨+|𝖯. If the measurement rejects, abort.

8. Send 𝖬𝑖
1 to the challenger.

(Challenger measures 𝐷𝖶𝗂
𝟣𝖬

𝗂
𝟣
and accepts or rejects.)

We analyze the algorithm by describing the state of the combined prover-verifier system after every
step.
After step 1: We assume that the registers 𝖠𝖬𝟢

(≤𝑘) are initialized in the state |𝖺𝗎𝗑⟩𝖠𝖬𝟢
(≤𝑘)𝖶>𝑖

0

satisfying the theorem statement. Thus, state of the adversary and challenger after step 1 is

|𝗂𝗇𝗂𝗍⟩ := |𝖺𝗎𝗑⟩
𝖠𝖬𝟢

(≤𝑘)𝖶
(>𝑖)
0

⊗ |0⟩
𝖶

(≤𝑖)
0

.

After step 4: In step 3, together with the verifiers action, the verifier and prover perform 𝐶(≤𝑘) on
registers 𝖶

(≤𝑘)
0 𝖬

(≤𝑘)
0 , so the state of the system after step 4 is given by

𝐶(≤𝑘) |𝗂𝗇𝗂𝗍⟩ ⊗ |+⟩𝖯 .

This state is in the +1 eigenstate of (Π ⊗ |+⟩⟨+|𝖯) as the first (𝑖 − 1) repetitions are initialized
correctly, so we can write the state as

(Π⊗ |+⟩𝖯)𝐶
(≤𝑘) |𝗂𝗇𝗂𝗍⟩ .

After step 7: After measuring 𝐷(<𝑖) ⊗ |+⟩⟨+|𝖯, we get the following state.

(𝐷(<𝑖) ⊗ ⟨+|𝖯)𝐴𝑊 (Π⊗ |+⟩𝖯)𝐶
(≤𝑘) |𝗂𝗇𝗂𝗍⟩ .
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The state might be subnormalized since we might abort in the event that the measurement rejects;
aborting also ensures that the rejection part of the amplitude would not interfere with the rest of
the algorithm and the analysis. Now recall that ̃︀Π = 𝐴†𝐷(<𝑖)𝐴, thus 𝐷(<𝑖) = 𝐴̃︀Π𝐴†. Performing
this substitution gives us the following expression for the state above.

𝐴(̃︀Π⊗ ⟨+|𝖯)𝑊 (Π⊗ |+⟩𝖯)𝐶
(≤𝑘) |𝗂𝗇𝗂𝗍⟩ .

Note that we choose the parameter at (8) so that 1−𝜇
𝛾 =

√
𝛿𝑖−1 and thus we can now apply the

guarantee of Corollary 4.5 and get that the state can be written as

𝛾𝐴̃︀ΠΠ𝐶(≤𝑘) |𝗂𝗇𝗂𝗍⟩+ |𝜈⟩

for some ‖|𝜈⟩‖2 ≤ 𝜈. We now use again the fact that 𝐶(≤𝑘) |𝗂𝗇𝗂𝗍⟩ is invariant under Π to remove Π.
We further plug in the definition of ̃︀Π, yielding

𝛾𝐷(<𝑖)𝐴𝐶(≤𝑘) |𝗂𝗇𝗂𝗍⟩+ |𝜈⟩ ,

which is exactly the “post-selection” state we would like to prepare up to a small error.
After the final verifier decision: After the verifier measures 𝐷𝖶𝗂

𝟣𝖬
𝗂
𝟣
, we obtain the state

𝛾𝐷(≤𝑖)𝐴𝐶(≤𝑘) |𝗂𝗇𝗂𝗍⟩+ |𝜈 ′⟩ ,

where |𝜈 ′⟩ := 𝐷𝖶𝗂
𝟣𝖬

𝗂
𝟣
|𝜈⟩ which still has 2-norm at most 𝜈 as 𝐷 ≼ id.

By the theorem’s assumption, the state |𝖺𝗎𝗑⟩ satisfies Tr(̃︁𝐺𝑖 |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|) ≥ 𝜏𝛿𝑖, thus⃦⃦
𝐷(≤𝑖)𝐴𝐶(≤𝑘) |𝗂𝗇𝗂𝗍⟩

⃦⃦
= ‖𝐺𝑖 |𝗂𝗇𝗂𝗍⟩‖ =

⃦⃦⃦̃︁𝐺𝑖 |𝖺𝗎𝗑⟩
⃦⃦⃦
≥
√
𝜏𝛿𝑖. Therefore, the above state has 2-norm at

least
𝛾
√
𝜏𝛿𝑖 − 𝜈 = (1− 𝜇)

√
𝜏𝛿 − 𝜇

√
𝜏𝛿 = (1− 2𝜇)

√
𝜏𝛿.

So the prover is accepted with probability at least (1 − 2𝜇)2𝜏𝛿. Finally the running time can be
verified by plugging in the appropriate parameters and noting that 𝐴 is only used in step 6 and ̃︀Π as
defined in equation (7) in step 5.

Note that since the theorem holds for any pure state |𝖺𝗎𝗑⟩ and since the algorithm is linear, it
immediately extends to mixed state inputs satisfying the same condition as well.

Finally, combining Lemma 4.6 (instantiating 𝜇 = 𝛿−𝜖
8 and 𝜏 = 1) with Corollary 4.3, we obtain

the following non-uniform reduction.

Proof of Theorem 4.1. The first part of the theorem immediately follows by picking the parameters
above.

For the second part, assume the adversary’s success probability is non-negligibly larger than
𝜖𝑘. Then there exists some function 𝛿 = 𝛿(𝜆) such that 𝛿𝑘 − 𝜖𝑘 is some inverse polynomial and
the adversaries success probability is at least 𝛿𝑘 infinitely often. Whenever the adversary in the
𝑘-fold parallel repetition of the original protocol achieves 𝛿𝑘, the success probability of Algorithm 1
is at least (1 − 2𝜇)2𝛿 ≥ (1 − 4𝜇)𝛿 ≥ 𝛿+𝜖

2 , which is larger than 𝜖 by a non-negligible function in
𝜆, since 𝛿 − 𝜖 ≥ 𝛿𝑘−𝜖𝑘

𝑘 for any real 𝜖 ≤ 𝛿 ≤ 1 ≤ 𝑘. Finally, the running time of this adversary

has a multiplicative overhead of �̃�
(︁

𝑘

𝜇
√
𝛿𝑘−1

)︁
= �̃�

(︁
𝑘

(𝛿−𝜖)
√
𝛿𝑘−1

)︁
= �̃�

(︁
𝑘2

(𝛿𝑘−𝜖𝑘)
√
𝛿𝑘−1

)︁
= �̃�

(︀
𝑘2𝛿−3𝑘/2

)︀
;

therefore, this new adversary is efficient as 𝛿𝑘 − 𝜖𝑘 is inverse polynomial and 𝑘 is polynomial.
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5 Uniform parallel repetition of 3-message protocols

In this section, we prove the uniform version of our main theorem.

Theorem 5.1. Let 𝜋 be a 3-message quantum interactive protocol with soundness 𝑠 against
polynomial-time (resp. polynomial-size) quantum adversaries. Then for any polynomial 𝑘 = 𝑘(𝜆),
𝜋⊗𝑘 has soundness 𝑠𝑘 against polynomial-time (resp. polynomial-size) quantum adversaries.

We do this by giving an efficient algorithm which prepares such a state from (polynomially
many copies of) the adversary’s initial state |𝖺𝗎𝗑⟩. Formally, we show the following, from which the
theorem is immediate.

Lemma 5.2. There is a polynomial-time quantum oracle algorithm Amp-U with the following
guarantee. Let 𝜋 = {𝐶,𝐷} be a 3-message quantum interactive protocol. For 𝑘 ∈ ℕ, 𝛿 ∈ [0, 1], let
(𝐴, |𝖺𝗎𝗑⟩) be an adversary against 𝜋⊗𝑘 which causes the challenger to accept with probability 𝛿𝑘. Then
for every 𝜖 there is a 𝑡 = (𝜖𝛿𝑘)−𝑂(1) such that (Amp-U𝐴,𝐶,𝐷(11/𝛿

𝑘
, 11/𝜖), |𝖺𝗎𝗑⟩⊗𝑡) is an adversary

against 𝜋 (i.e., a single repetition) which causes the challenger to accept with probability 𝛿 − 𝜖.

5.1 Jordan’s lemma and alternating projectors

Lemma 5.3 (Jordan’s lemma [Jor75]). For any two Hermitian projectors Π𝖠 and Π𝖡 on a Hilbert
space 𝖧, there exists an orthogonal decomposition of 𝖧 =

⨁︀
𝑗 𝒮𝑗 (the Jordan decomposition with

respect to Π𝖠,Π𝖡) into one-dimensional and two-dimensional subspaces {𝒮𝑗}𝑗 (the Jordan subspaces),
where each 𝒮𝑗 is invariant under both Π𝖠 and Π𝖡. Moreover:

• in each one-dimensional space, Π𝖠 and Π𝖡 act as identity or rank-zero projectors; and
• in each two-dimensional subspace 𝒮𝑗, Π𝖠 and Π𝖡 are rank-one projectors. In particular, there

exist distinct orthogonal bases {|𝑣1𝑗 ⟩ , |𝑣0𝑗 ⟩} and {|𝑤1
𝑗 ⟩ , |𝑤0

𝑗 ⟩} for 𝒮𝑗 such that Π𝖠 projects onto
|𝑣1𝑗 ⟩ and Π𝖡 projects onto |𝑤1

𝑗 ⟩.

In order to unify the treatment of one- and two-dimensional subspaces, for a one-dimensional
subspace 𝒮𝑗 = span(|𝑣⟩) we denote |𝑣⟩ both by |𝑣𝜆0

𝑗 ⟩ for Π𝖠 |𝑣⟩ = 𝜆0 |𝑣⟩, and by |𝑤𝜆1
𝑗 ⟩ for Π𝖡 |𝑣⟩ =

𝜆1 |𝑣⟩. We define |𝑣1−𝜆0
𝑗 ⟩ and |𝑤1−𝜆1

𝑗 ⟩ to be the zero vector.

Definition 5.4. For two Hermitian projectors Π𝖠,Π𝖡 we define the Jordan measurement to be the
projective measurement 𝒫𝖩𝗈𝗋[Π𝖠,Π𝖡] := (Π𝖩𝗈𝗋

𝑗 )𝑗 with outcomes 𝑗, where Π𝖩𝗈𝗋
𝑗 projects on to 𝒮𝑗.

We define the value of the subspace 𝒮𝑗 to be 𝑝𝑗 := | ⟨𝑣1𝑗 |𝑤1
𝑗 ⟩ |2.

The following straightforward but useful claim relates the Jordan decomposition with respect to
Π𝖠,Π𝖡 to the spectral decompositions of Π𝖠Π𝖡Π𝖠 and Π𝖡Π𝖠Π𝖡.

Claim 5.5. Π𝖠Π𝖡Π𝖠 =
∑︀

𝑗 𝑝𝑗 |𝑣1𝑗 ⟩⟨𝑣1𝑗 |, and Π𝖡Π𝖠Π𝖡 =
∑︀

𝑗 𝑝𝑗 |𝑤1
𝑗 ⟩⟨𝑤1

𝑗 |.

Alternating projectors. Jordan’s lemma allows us to characterize the behavior of an alternating
sequence of binary projective measurements. Define the following (classical) probability distribu-
tion 𝖬𝖶𝖣𝗂𝗌𝗍(𝑝, 𝑇 ) (for “Marriott–Watrous distribution”), parameterized by 𝑝 ∈ [0, 1] and 𝑇 ∈ ℤ:
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𝖬𝖶𝖣𝗂𝗌𝗍(𝑝, 𝑇 ):

1. For each 𝑖 ∈ [𝑇 ], set 𝑎𝑖 := 0 with probability 𝑝 and 𝑎𝑖 := 1 otherwise.

2. Let 𝑏0 := 1. For each 𝑖 ∈ [𝑇 ], define 𝑏𝑖 := 𝑏𝑖−1 ⊕ 𝑎𝑖.

3. Output 𝑏1, 𝑏2, . . . , 𝑏𝑇 .

The following is a straightforward consequence of Jordan’s lemma; see e.g. [CMSZ22] for a proof.

Lemma 5.6. The measurement outcomes that result from applying 𝑇 alternating binary projective
measurements Π𝖠,Π𝖡,Π𝖠,Π𝖡, . . . to the state

∑︀
𝑗 𝛼𝑗 |𝑤1

𝑗 ⟩ have the following distribution:
1. sample 𝑝𝑗 with probability |𝛼𝑗 |2;
2. output 𝖬𝖶𝖣𝗂𝗌𝗍(𝑝𝑗 , 𝑇 ).

Via a Chernoff bound, we then obtain the following very useful result.

Claim 5.7. For 𝑏0, 𝑏1, . . . , 𝑏𝑛 ∈ {0, 1}, define

𝖭𝗎𝗆𝖱𝖾𝗉𝗌(𝑏0, 𝑏1, . . . , 𝑏𝑛) :=
|{𝑗 ∈ {1, . . . , 𝑛} : 𝑏𝑗−1 = 𝑏𝑗}|

𝑛
.

Fix 𝑝 ∈ [0, 1], 𝑇 ∈ ℤ. Let 𝑋 := 𝖭𝗎𝗆𝖱𝖾𝗉𝗌(1, 𝑏1, . . . , 𝑏𝑇 ) for 𝑏1, . . . , 𝑏𝑇 ← 𝖬𝖶𝖣𝗂𝗌𝗍(𝑇, 𝑝). Then
𝔼[𝑋] = 𝑝, and for any 𝜀, 𝛿 ∈ [0, 1], if 𝑇 ≥

⌈︀
ln( 1

2𝛿 )/(2𝜀
2)
⌉︀
,

Pr[|𝑋 − 𝑝| ≤ 𝜀] ≥ 1− 𝛿.

An important consequence of the above is the existence of an efficient (𝜀, 𝛿)-almost projective
measurement related to the Jordan decomposition.

Definition 5.8 ([Zha20]). A real-valued measurement ℳ is (𝜀, 𝛿)-almost-projective if applying
ℳ twice in sequence to any state 𝜌 produces measurement outcomes 𝑝, 𝑝′ where

Pr[
⃒⃒
𝑝− 𝑝′

⃒⃒
≤ 𝜀] ≥ 1− 𝛿.

Lemma 5.9. For any 𝜀, 𝛿 > 0, and binary projective measurements (Π𝖠,Π𝖡), there is an (𝜀, 𝛿)-
almost projective measurement 𝖤ff𝖩𝗈𝗋𝜀,𝛿 which applies Π𝖠,Π𝖡 a total of 𝑂( 1

𝜀2
log 1

𝛿 ) times, with the
following properties:

• if Tr(Π𝖠𝜌) = 1 then 𝔼𝑝←𝖤ff𝖩𝗈𝗋(𝜌)[𝑝] = Tr(Π𝖡𝜌) = Tr(Π𝖠Π𝖡Π𝖠𝜌);

• if Pr[𝖤ff𝖩𝗈𝗋(𝜌) ≥ 𝑝] ≥ 𝛾 then
∑︀

𝑗,𝑝𝑗≥𝑝−𝜀 ⟨𝑣
1
𝑗 | 𝜌 |𝑣1𝑗 ⟩ ≥ 𝛾 − 𝛿;

• similarly, if Pr[𝖤ff𝖩𝗈𝗋(𝜌) ≤ 𝑝] ≥ 𝛾 then
∑︀

𝑗,𝑝𝑗≤𝑝+𝜀 ⟨𝑣1𝑗 | 𝜌 |𝑣1𝑗 ⟩ ≥ 𝛾 − 𝛿;

Proof sketch. Let Π′𝐴 := Π𝐴⊗ |00⟩⟨00|, Π′𝐵 = Π𝐵 ⊗ |++⟩⟨++|+ 𝐼 ⊗ |−−⟩⟨−−|. The algorithm works
as follows:

1. Measure Π′𝐴 on 𝜌⊗ |00⟩⟨00|; if the outcome is 0, abort.
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2. Alternate Π′𝐵,Π
′
𝐴 𝑇 = 2

⌈︀
ln(1𝛿 )/𝜀

2
⌉︀

times, obtaining outcomes 𝑏1, . . . , 𝑏𝑇 .

3. Continue alternating until Π′𝐴 → 1, or at most 𝑘 = 3 log 2
𝛿 times.

4. Output 4(𝖭𝗎𝗆𝖱𝖾𝗉𝗌(1, 𝑏1, . . . , 𝑏𝑇 )− 1
4).

If |𝑣1𝑗 ⟩ is an eigenvector of Π𝐴Π𝐵Π𝐴 with eigenvalue 𝑝𝑗 , then |𝑣1𝑗 ⟩⊗|00⟩ is an eigenvector of Π′𝐴Π
′
𝐵Π
′
𝐴

with eigenvalue 1
4𝑝𝑗+

1
4 ∈ [14 ,

1
2 ]. Hence the transition probability when alternating Π′𝐴,Π

′
𝐵 is between

1
4 and 1

2 , so the probability that after 𝑘 applications we have not reached Π′𝐴 is at most
(︀
3
4

)︀𝑘 ≤ 𝛿/2.
Combined with the usual analysis of alternating projectors [Zha20, CMSZ22], the lemma statement
follows.

5.2 State transformation for almost-projective measurements

In this section, we describe an algorithm for the following problem. Letℳ0,ℳ1 be (𝜀, 𝛿)-almost
projective measurements (Definition 5.8). Given a state 𝜌 such thatℳ0(𝜌) ≥ 𝛼 with high probability,
and a target 𝛽 ∈ [0, 1], efficiently prepare a state 𝜎 so that either:

(i) ℳ1(𝜎) ≳ 𝛽 with high probability, or

(ii) bothℳ0(𝜎) ≳ 𝛼 and ℳ1(𝜎) < 𝛽 with high probability.

That is, the algorithm either converts a “good” state with respect toℳ0 into a “good” state with
respect to ℳ1, or produces a “good” state with respect to ℳ0 which has small overlap with any
state that is “good” with respect toℳ1.

Before giving the algorithm, we set up some preliminaries. By Naimark dilation, any measurement
ℳ = (𝑀𝑞)𝑞∈{0,1}𝑛 , can be implemented as a unitary 𝑈ℳ on 𝖧 ⊗𝖶 for some ancilla register 𝖶
initialized to zero, followed by some projective measurement (Π𝑞)𝑞∈{0,1}𝑛 on 𝖶, where the Π𝑞

are independent of ℳ. Formally, for each 𝑞 ∈ {0, 1}𝑛, the unitary 𝑈ℳ and projector Π𝑞 satisfy
𝑀𝑞𝜌𝑀

†
𝑞 = Tr𝖶(Π𝑞𝑈ℳ(𝜌 ⊗ |0⟩⟨0|𝖶)𝑈 †ℳ) for all states 𝜌. By “black-box unitary access to ℳ”, we

mean access to 𝑈ℳ ,𝑈 †ℳ , and access to the unitary
∑︀

𝑞,𝑞′∈{0,1}𝑛 Π𝑞 ⊗ |𝑞′ ⊕ 𝑞⟩⟨𝑞′|.
The main result of this section is the following lemma.

Lemma 5.10. Letℳ0,ℳ1 be (𝜀, 𝛿)-almost projective measurements on the same system 𝖧 for some
0 < 𝛿 < 1. There is an algorithm 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌 such that for every state 𝜌, and real numbers 𝛼, 𝛽, 𝛾 ∈
[0, 1], 𝜏 ∈ [2𝜀, 1− 𝛿] satisfying Pr[ℳ(𝜌) ≥ 𝛼] ≥ 1− 𝛾, letting (𝜎, 𝑐)← 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌𝜀,𝛿,𝜏 [ℳ0,ℳ1, 𝛽](𝜌)
and 𝑞𝑏 ←ℳ𝑏(𝜎), the following hold, for 𝐾 = ⌈ 2𝜏 ln

1
𝛿 ⌉:

1. Pr[𝑐 = ⊥] ≤ 4𝐾
√
𝛿,

2. Pr[𝑐 = 0 ∧ 𝑞1 < 𝛽 − 𝜀] ≤ 𝛿,

3. Pr[𝑐 = 1 ∧ 𝑞0 < 𝛼− 2𝐾𝜀] ≤ 𝛾 +
√
𝜏 + 𝜀+ 𝛿, and

4. Pr[𝑐 = 1 ∧ 𝑞1 > 𝛽] ≤ 𝜏 + 𝜀+ 𝛿.

Furthermore 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌𝜖,𝛿,𝜏 runs in expected time 𝑂(𝐾), given black-box unitary access to ℳ0,ℳ1.

26



That is, 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌 takes as input a state 𝜌 and outputs a state 𝜎 and a flag 𝑐 such that if 𝑐 = 0
then 𝜎 satisfies condition (i) and if 𝑐 = 1 then 𝜎 satisfies condition (ii). (𝑐 = ⊥ indicates failure.)

Let ℳ0,ℳ1 be almost projective measurements on the same register 𝖧, and let 𝖶0,𝖶1 be
corresponding ancilla registers for the Naimark dilations ofℳ0 andℳ1 respectively. We define the
projectors:

Π𝑏
≥𝑝 :=

∑︁
𝑞≥𝑝

𝑈 †ℳ𝑏
Π𝑞𝑈ℳ𝑏

and Π𝑏
<𝑝 := id𝖧⊗𝖶𝑏

−Π𝑏
≥𝑝 .

We define Π̃𝑏
≥𝑝 := Π𝑏

≥𝑝 ⊗ |0⟩⟨0|𝖶1−𝑏
, and define Π̃𝑏

<𝑝 := Π𝑏
<𝑝 ⊗ |0⟩⟨0|𝖶1−𝑏

.

Algorithm 2. 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌𝜀,𝛿,𝜏 [ℳ0,ℳ1, 𝛽].

Input: Quantum register 𝖧.

1. Let 𝐾 := ⌈ 2𝜏 ln
1
𝛿 ⌉, 𝑇 := ⌈1/

√
𝛿⌉. For 𝑖 = 1, . . . ,𝐾:

(a) Apply the (𝜀, 𝛿)-almost-projective measurementℳ0, obtaining outcome 𝛼𝑖.

(b) Initialize ancilla registers 𝖶0,𝖶1 to |0⟩.
(c) Apply the measurement Π̃1

<𝛽 , obtaining outcome 𝑏1. If 𝑏1 = 0, apply 𝑈ℳ1 to (𝖧,𝖶1),
discard the 𝖶 registers, and output 𝑐 = 0 along with the 𝖧 register.

(d) Apply the measurements Π̃0
≥𝛼𝑖−𝜀, Π̃

1
<𝛽 in an alternating fashion𝐾−1 times, obtaining

outcomes 𝑏2, . . . , 𝑏2𝐾−1.

(e) Apply the measurements Π̃0
≥𝛼𝑖−𝜀, Π̃

1
<𝛽 in an alternating fashion until Π̃0

≥𝛼𝑖−𝜀 → 1,
or until 2𝑇𝐾 + 1 measurements have been applied in this step (2(𝑇 + 1)𝐾 overall).
In the latter case, abort (output ⊥).

(f) If 𝖭𝗎𝗆𝖱𝖾𝗉𝗌(𝑏1, . . . , 𝑏2𝐾−1) ≥ 1− 𝜏 , discard the 𝖶 registers and output 𝑐 = 1 along
with the 𝖧 register.

(g) Apply 𝑈ℳ0 to (𝖧,𝖶0), and discard the 𝖶 registers.

2. If the algorithm does not terminate with output above, abort (output ⊥).

In the proof we will make use of the following lemma, due to [LMS22]:

Lemma 5.11 (Pseudoinverse lemma). Let Π𝖠,Π𝖡 be projectors, and (Π𝖩𝗈𝗋
𝑗 )𝑗 := 𝒫𝖩𝗈𝗋[Π𝖠,Π𝖡] the

corresponding Jordan measurement. Let 𝜌 be a state such that Π𝖠𝜌 = 𝜌Π𝖠 and Tr(Π𝖠𝜌) ≥ 1 − 𝛾,
and let Π0 :=

∑︀
𝑗,𝑝𝑗=0Π

𝖩𝗈𝗋
𝑗 . Let 𝐸 :=

∑︀
𝑗,𝑝𝑗>0

1
𝑝𝑗
Π𝖩𝗈𝗋

𝑗 . There exists a “pseudoinverse” state 𝜎 with
Tr(Π𝖡𝜎) = 1 such that all of the following are true:

1. Tr(Π𝖠𝜎) =
1−Tr(Π0𝜌)
Tr(𝐸𝜌) ,

2. td
(︁
𝜌, Π𝖠𝜎Π𝖠

Tr(Π𝖠𝜎)

)︁
≤

√︀
Tr(Π0𝜌),

3. for all 𝑗 such that 𝑝𝑗 > 0 it holds that Tr(Π𝖩𝗈𝗋
𝑗 𝜎) =

Tr(Π𝖩𝗈𝗋
𝑗 𝜌)

𝑝𝑗 ·Tr(𝐸𝜌) , and
4. Tr(Π0𝜎) = 0.
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Claim 5.12. Let 𝜌 be such that Π𝖠𝜌 = 𝜌Π𝖠 and Tr(Π0𝜌) = 0. Then there exists a state 𝜌′ such that
Tr(𝐸𝜌′) = Tr(𝐸𝜌), Tr(Π𝖠𝜌

′) = 1, and td(𝜌, 𝜌′) ≤ 1− Tr(Π𝖠𝜌).

Proof. This is a variant of [LMS22, Claim 7.2]. Let

𝑈 :=
∑︁

𝑗,𝑝𝑗 /∈{0,1}

(|𝑣1𝑗 ⟩ ⟨𝑣0𝑗 |+ |𝑣0𝑗 ⟩ ⟨𝑣1𝑗 |) +
∑︁

𝑗,𝑝𝑗∈{0,1}

|𝑣𝑝𝑗𝑗 ⟩ ⟨𝑣
𝑝𝑗
𝑗 |

and let 𝜌′ := Π𝖠𝜌 + 𝑈(𝐼 − Π𝖠)𝜌𝑈
†. Then td(𝜌, 𝜌′) = 1

2

⃦⃦
(𝐼 −Π𝖠)𝜌− 𝑈(𝐼 −Π𝖠)𝜌𝑈

†⃦⃦
1
≤ Tr((𝐼 −

Π𝖠)𝜌).

Claim 5.13. For all 𝜖, 𝛿, 𝜏 and all initial states in 𝖧 at step 1a, every time the 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌𝜖,𝛿,𝜏 reaches
step 1e, it aborts with probability at most 2

√
𝛿 at that step and makes at most 9𝐾 measurements in

expectation. Moreover, for all 1 < 𝑖 ≤ 𝐾, Pr[𝑏1 = 1 in iteration 𝑖− 1 ∧ 𝛼𝑖 < 𝛼𝑖−1 − 2𝜀] ≤ 3
√
𝛿.

Proof. This follows via an analysis similar to [CMSZ22, Lemma 4.10], modified to account for the
additional measurements in step 1d.

First note that, because ℳ0 is (𝜀, 𝛿)-almost projective, the probability that a measurement
of Π̃0

≥𝛼𝑖−𝜀 accepts immediately after step 1b is 1 − 𝛿. Hence by Proposition 3.3, post-selecting
on Π̃0

≥𝛼𝑖−𝜀 → 1 at this point disturbs the state by at most
√
𝛿 in trace distance. Henceforth we

therefore assume that the state immediately after step 1b is some |𝜑⟩ ∈ img(Π̃0
≥𝛼𝑖−𝜀). (We without

loss of generality argue this for all pure states |𝜑⟩ ∈ img(Π̃0
≥𝛼𝑖−𝜀) and by linearity the argument also

generalizes to mixed states.) This changes the probability of any event by at most an additive
√
𝛿

and the expected running time by at most an additive
√
𝛿(2𝑇𝐾 + 1) ≤

√
𝛿(4𝐾/

√
𝛿 + 1) ≤ 5𝐾.

We first analyse the distribution of measurement outcomes in step 1e. Indeed, let
𝑏2𝐾 , 𝑏2𝐾+1, . . . , 𝑏2𝑇𝐾 be the outcomes of those measurements. By Lemma 5.6, we have that
𝑏1, . . . , 𝑏2𝑇𝐾 ∼

∑︀
𝑗 𝑎𝑗𝖬𝖶𝖣𝗂𝗌𝗍(𝑝𝑗 , 2𝑇𝐾) for some 𝑎𝑗 ∈ [0, 1],

∑︀
𝑗 𝑎𝑗 = 1.

Fix any 𝑝 ∈ [0, 1], and consider 𝑐1, . . . , 𝑐2𝑇𝐾 ← 𝖬𝖶𝖣𝗂𝗌𝗍(𝑝, 2𝑇𝐾). Let 𝑟 := Pr[𝑐2𝐾 = 0]. Note
that the variables 𝑐2, 𝑐4, . . . , 𝑐2𝑇𝐾 form a Markov chain with symmetric transition probabilities and
initial state 𝑐0 = 1. Hence, we have that Pr[𝑐2𝑖𝐾 = 1 | 𝑐2(𝑖−1)𝐾 = 0] = 𝑟 for all 2 ≤ 𝑖 ≤ 𝑇 . It follows
that

Pr

[︃
𝑇⋀︁
𝑖=1

𝑐2𝑖𝐾 = 0

]︃
= Pr[𝑐2𝐾 = 0]

𝑇∏︁
𝑖=2

Pr[𝑐2𝑖𝐾 = 0 | 𝑐2(𝑖−1)𝐾 = 0] = 𝑟(1− 𝑟)𝑇−1 ≤ 1

𝑇
, (9)

where the last inequality follows by finding that LHS is maximized when 𝑟 = 1
𝑇 , giving maximum

1
𝑇 ·

(︀
1− 1

𝑇

)︀𝑇−1 ≤ 1
𝑇 . Next, let 𝐷′ be a random variable corresponding to the smallest 𝑖 ≥ 1 such

that 𝑐2𝑖𝐾 = 1. Then

𝔼[𝐷′] =
𝑇∑︁
𝑡=1

Pr[𝐷′ ≥ 𝑡] ≤ 1 + 𝑟

∞∑︁
𝑡=0

(1− 𝑟)𝑡 = 2 . (10)

Since the distribution of 𝑏1, . . . , 𝑏2𝑇𝐾 is a convex combination of 𝖬𝖶𝖣𝗂𝗌𝗍(𝑝𝑗 , 2𝑇𝐾), it holds by
convexity and (9) that Pr

[︁⋀︀𝑇
𝑖=1 𝑏2𝑖𝐾 = 0

]︁
≤ 1/𝑇 . If (in particular) 𝑏2𝑖𝐾 = 1 for any 1 ≤ 𝑖 ≤ 𝑇 , then

𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌 does not abort; hence 𝐴 aborts with probability at most 1/𝑇 ≤
√
𝛿. Next, let 𝐷 be the

number of measurements applied in step 1e. By convexity, linearity of expectation and Equation (10),
𝔼[𝐷] ≤ 4𝐾.
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Finally we bound the probability that 𝛼𝑖 < 𝛼𝑖−1 − 2𝜀. The post-measurement state after step 1c,

conditioned on 𝑏1 = 1, is Π̃1
<𝛽 |𝜑⟩ /

√
𝑞, where 𝑞 = Pr[𝑏1 = 1] =

⃦⃦⃦
Π̃1

<𝛽 |𝜑⟩
⃦⃦⃦2

=
∑︀

𝑗 𝑞𝑗𝑝𝑗 for 𝑞𝑗 ∈ [0, 1]

such that
∑︀

𝑗 𝑞𝑗 = 1. 𝑞 > 0 since otherwise we would reach step 1c with probability 0. Observe

that
⃦⃦⃦
Π𝖩𝗈𝗋

𝑗 |𝜑⟩ /
√
𝑞
⃦⃦⃦2

= 𝑞𝑗𝑝𝑗/𝑞 for each 𝑗. Let 𝜌 be the reduced density matrix on register 𝖧,𝖶0,𝖶1

after step 1e (again conditioned on 𝑏1 = 1). Let 𝜌′ be the state guaranteed by Claim 5.12; note that
td(𝜌, 𝜌′) ≤

√
𝛿 by (9). Since Π𝖩𝗈𝗋

𝑗 commutes with both Π̃0
≥𝛼𝑖−𝜀 and Π̃1

<𝛽 , Tr(Π𝖩𝗈𝗋
𝑗 𝜌) = 𝑞𝑗𝑝𝑗/𝑞, so

Tr(𝐸𝜌′) = Tr(𝐸𝜌) =
∑︁

𝑗,𝑝𝑗>0

𝑞𝑗
𝑞
≤ 1

𝑞
(11)

and Tr(Π0𝜌
′) = Tr(Π0𝜌) = 0 for 𝐸,Π0 as defined in Lemma 5.11.

By Lemma 5.11 there is a pseudoinverse state 𝜎 ∈ img(Π̃1
<𝛽) with 𝜌′ = Π̃0

≥𝛼𝑖−𝜀𝜎Π̃
0
≥𝛼𝑖−𝜀/𝑞

′ for
𝑞′ = 1

Tr(𝐸𝜌) ≥ 𝑞 by (11). Since img(Π̃1
<𝛽) ⊆ img(𝐼𝖧 ⊗ |0⟩⟨0|𝖶0

⊗ 𝐼𝖶1), 𝜎 = 𝜎′𝖧,𝖶1
⊗ |0⟩⟨0|𝖶0

for some

𝜎′. Hence Tr𝖶(𝑈ℳ0𝜌
′𝑈 †ℳ0

) is precisely the post-measurement state after applying ℳ0 to 𝜎′ and
post-selecting on obtaining an answer greater than 𝛼𝑖 − 𝜀. It follows that Pr[𝛼𝑖 < 𝛼𝑖−1 − 2𝜀 | 𝑏1 =
1] = Pr[𝑝′ < 𝛼𝑖−1 − 2𝜀 | 𝑝 ≥ 𝛼𝑖 − 𝜀] where 𝑝, 𝑝′ are the results of applyingℳ0 twice in sequence to
𝜎. By the definition of conditional probability,

Pr[𝑝′ < 𝛼𝑖−1 − 2𝜀 | 𝑝 ≥ 𝛼𝑖 − 𝜀] =
Pr[𝑝′ < 𝛼𝑖−1 − 2𝜀 ∧ 𝑝 ≥ 𝛼𝑖 − 𝜀]

Pr[𝑝 ≥ 𝛼𝑖 − 𝜀]
≤ 𝛿

𝑞

since Pr[𝑝 ≥ 𝛼𝑖 − 𝜀] = 𝑞′ ≥ 𝑞 and ℳ0 is (𝜀, 𝛿)-almost projective. The claim follows since Pr[𝑏1 =
1] = 𝑞.

Claim 5.14. 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌 aborts with probability at most 4𝐾
√
𝛿.

Proof. We show that for each 𝑖, the probability that the algorithm stops (outputting either 0 or 1)
in the 𝑖-th iteration is at least 𝜏 . Consider the following experiment:

𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌 𝑖-th round abort experiment

1. Initialize ancilla registers 𝖶0,𝖶1 to |0⟩.
⋆. Apply the Jordan subspace measurement, obtaining a subspace label 𝑗.
2. Apply the measurement Π̃1

<𝛽 , obtaining outcome 𝑏1. If 𝑏1 = 0, output Yes.
3. Apply the measurements Π̃0

≥𝛼𝑖−𝜀, Π̃
1
<𝛽 in an alternating fashion 𝐾 − 1 times, obtaining

outcomes 𝑏2, . . . , 𝑏𝐾 . If 𝖭𝗎𝗆𝖱𝖾𝗉𝗌(𝑏1, . . . , 𝑏𝐾) ≥ 1− 𝜏 , output Yes.
4. Otherwise, output No.

Observe that 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌 stops at the 𝑖-th iteration without aborting if and only if this experiment,
without step ⋆, outputs Yes. Since step ⋆ commutes with Π̃0

≥𝛼𝑖−𝜀 and Π̃1
<𝛽, inserting ⋆ does not

change the outcome probabilities. Note that given outcome 𝑗 from step ⋆, the probability that step
2 outputs Yes is 1− 𝑝𝑗 , and that 𝖭𝗎𝗆𝖱𝖾𝗉𝗌(𝑏1, . . . , 𝑏𝐾) ∼ 𝖡𝗂𝗇(𝐾, 𝑝𝑗)/𝐾. Hence there are two cases:

• if 𝑝𝑗 < 1− 𝜏 + 𝜀, the probability that step 2 outputs Yes is at least 𝜏 − 𝜀;
• if 𝑝𝑗 ≥ 1− 𝜏 + 𝜀, the probability that step 3 outputs Yes is at least 1− 𝛿 ≥ 𝜏 − 𝜀.
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Since this lower bound holds regardless of the initial state at iteration 𝑖, it follows that the probability
that the procedure fails to terminate with output within 𝐾 steps is at most (1 − (𝜏 − 𝜀))𝐾 ≤
(1− 𝜏/2)𝐾 ≤ 𝑒−𝜏𝐾/2 ≤ 𝛿.

Then the overall probability, using union bound and Claim 5.13, is at most 3𝐾
√
𝛿+𝛿 ≤ 4𝐾

√
𝛿.

Next we show that, for any 𝛼, 𝛽 ∈ [0, 1], a state with large overlap with both Π̃0
≥𝛼 and Π̃1

<𝛽 is
likely to return an outcome ≥ 𝛼 when measured withℳ0 and < 𝛽 when measured withℳ1. (Note
this is not trivial due to the presence of ancillas.)

Claim 5.15. For any state 𝜌 satisfying Tr(Π̃0
≥𝛼𝜌) = 1 and Tr(Π̃1

<𝛽𝜌) ≥ 1− 𝛾, it holds that

Pr[ℳ0(𝜌
′) ≥ 𝛼] ≥ 1−√𝛾 and Pr[ℳ1(𝜌

′) < 𝛽] ≥ 1− 𝛾 ,

where 𝜌′ := Tr𝖶0,𝖶1(𝜌).

Proof. We have that Pr[ℳ1(𝜌
′) < 𝛽] = Tr(Π1

<𝛽(𝜌
′⊗ |0⟩⟨0|𝖶1

)). Since Tr(Π̃0
≥𝛼𝜌) = 1, 𝜌′⊗ |0⟩⟨0|𝖶1

=

Tr𝖶0(𝜌), and so Pr[ℳ1(𝜌
′) < 𝛽] = Tr(Π̃1

<𝛽𝜌) = 1− 𝛾.
Similarly, Pr[ℳ0(𝜌

′) ≥ 𝛼] = Tr(Π̃0
≥𝛼(𝜌

′⊗ |0⟩⟨0|𝖶0
)). Since Tr(Π̃1

<𝛽𝜌) ≥ 1− 𝛾, the states Tr𝖶1(𝜌)
and 𝜌′ ⊗ |0⟩⟨0|𝖶0

are √𝛾-close in trace distance by Proposition 3.3. Hence Pr[ℳ0(𝜌
′) ≥ 𝛼] ≥

Tr(Π0
≥𝛼𝜌)−

√
𝛾 = 1−√𝛾.

We use this claim to prove that the algorithm outputs the correct state when it does not abort.

Claim 5.16. For all quantum states 𝜎 and 𝜀, 𝛿, 𝜏 , let (𝑐, 𝜌)← 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌𝜀,𝛿,𝜏 [ℳ0,ℳ1, 𝛽](𝜎) be the
output of the algorithm. Then the following hold, where 𝑖 is (a random variable corresponding to) the
last iteration of the algorithm:

1. Pr[𝑐 = 0 ∧ℳ1(𝜌) < 𝛽 − 𝜀] ≤ 𝛿,

2. Pr[𝑐 = 1 ∧ℳ0(𝜌) < 𝛼𝑖 − 𝜀] ≤
√
𝜏 + 𝜀+ 𝛿, and

3. Pr[𝑐 = 1 ∧ℳ1(𝜌) ≥ 𝛽] ≤ 𝜏 + 𝜀+ 𝛿.

Proof. By the description of 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌, 𝑐 = 0 when the measurement Π̃1
<𝛽 yields outcome 0 in

step 1c. By the definition of an almost projective measurement, the probability that applyingℳ1

subsequently yields outcome < 𝛽 − 𝜀 is less than 𝛿, which proves the first inequality.
Consider inserting the Jordan subspace measurement, 𝒫𝖩𝗈𝗋, after step 1e, obtaining outcome

𝑗. Since 𝒫𝖩𝗈𝗋 commutes with Π̃0
≥𝛼−𝜀 and Π̃1

<𝛽, we can equivalently insert the Jordan subspace
measurement before Step 1d. Suppose that the outcome 𝑗 satisfies 𝑝𝑗 < 1− 𝜏 − 𝜀; conditioned on
receiving this outcome, by Claim 5.7, Pr[𝖭𝗎𝗆𝖱𝖾𝗉𝗌(𝑏1, . . . , 𝑏2𝐾−1) ≥ 1− 𝜏 ] ≤ 𝛿.

By the definition of conditional probability we have that

Pr[𝖭𝗎𝗆𝖱𝖾𝗉𝗌(𝑏1, . . . , 𝑏2𝐾−1) ≥ 1− 𝜏 ∧ 𝑝𝑗 < 1− 𝜏 − 𝜀] ≤ 𝛿 . (12)

Let 𝜌 be the output state of 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌, conditioned on halting with output 𝑐 = 1; let 𝑞 := Pr[𝑐 =
1]. Then by construction, Tr(Π̃0

≥𝛼𝑖−𝜀𝜌) = 1, and by equation (12), Tr(
∑︀

𝑗,𝑝𝑗<1−𝜏−𝜀Π
𝖩𝗈𝗋
𝑗 𝜌) ≤ 𝛿/𝑞.

Then Tr(Π̃1
<𝛽𝜌) ≥ (1− 𝜏 − 𝜀)(1− 𝛿/𝑞) ≥ 1− 𝜏 − 𝜀− 𝛿/𝑞. It follows from Claim 5.15 that

Pr[ℳ0(𝜌) ≥ 𝛼𝑖 − 𝜀] ≥ 1−
√︀
𝜏 + 𝜀+ 𝛿/𝑞 and Pr[ℳ1(𝜌) < 𝛽] ≥ 1− 𝜏 − 𝜀− 𝛿/𝑞 .

The second two inequalities in the claim then follow by definition of the conditional probability and
since 𝑞 ≤ 1.
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We are now ready to put together the proof of Lemma 5.10.

Proof of Lemma 5.10. Claim 5.14 shows that Pr[𝑐 = ⊥] ≤ 4𝐾
√
𝛿. Claim 5.16 shows the correctness

of the algorithm when the algorithm does not abort. Claim 5.13 shows that 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌 makes 𝑂(𝐾)
measurements in expectation.

5.3 Proof of Lemma 5.2

We are now ready to prove Lemma 5.2. First recall the definition of 𝐺𝑖 from equation (6):

𝐺𝑖 = (𝐶⊗𝑘)†𝐴†
(︁
𝐷(≤𝑖)

)︁
𝐴 · 𝐶⊗𝑘.

Let 𝜖0 := 𝜖𝛿𝑘/4, 𝜏 := 𝜖20/100, 𝛿 := 𝜏6

8𝑘3
, 𝜀 :=

𝜖20𝜏
10 log 1/𝛿 . For all 𝑖 ∈ [𝑘], define ℳ𝑖 :=

𝖤ff𝖩𝗈𝗋𝜀,𝛿[|0⟩⟨0|𝖶≤𝑖
0
, 𝐺𝑖]. The algorithm Amp-U is defined as follows.

Algorithm 3. Uniform adversary Amp-U for the 1-fold protocol.

Input: registers (𝖠𝗃)1≤𝑗≤𝑡, unitary oracles 𝐴,𝐶,𝐷, 𝛿, 𝜖 ∈ [0, 1], 𝑘 ∈ ℕ.

1. For 𝑗 = 1, . . . , 𝑡, initialise a fresh register 𝖶0,𝑗 ,𝖬0,𝑗 to |0⟩ and measure 𝖠𝑗 ,𝖶0,𝑗 ,𝖬0,𝑗 with
ℳ𝑘, obtaining outcome 𝛾𝑗 .

2. Let 𝑗 be such that 𝛾𝑗 ≥ 𝛿𝑘 − 𝜀; if no such 𝑗 exists, abort. Set 𝖠 := 𝖠𝑗 ,𝖶0 := 𝖶0,𝑗 .

3. For 𝑖 = 𝑘, . . . , 2, apply 𝖲𝗍𝖺𝗍𝖾𝖳𝗋𝖺𝗇𝗌𝜀,𝛿,𝜏 [ℳ𝑖,ℳ𝑖−1, 𝛿
𝑖−1 − 𝜀] to (𝖠,𝖶0), obtaining outcome

𝑐𝑖. If 𝑐𝑖 = ⊥, abort. If 𝑐𝑖 = 1, stop and proceed to the next step.

4. If 𝑐𝑖 = 0 for all 𝑖 = 2, . . . , 𝑘, set 𝑐1 := 1. Let 𝑖* be the (unique) index for which 𝑐𝑖* = 1.

5. Run 𝖠𝗆𝗉𝜏,𝜇 (Algorithm 1) on input 𝑖*, 𝛿 and registers 𝖠𝖶≥𝑖+1
0 𝖬≤𝑘0 .

We first bound the probability that Algorithm 3 aborts. By Lemma 5.9 and assumption, for all 𝑗,
𝔼[𝑝𝑗 ] = Tr( ̃︀𝐺𝑘𝜌𝑗) ≥ 𝛿𝑘. Since 𝑝𝑗 ≤ 1, by an averaging argument we get Pr[𝑝𝑗 ≥ 𝛿𝑘−𝜀] ≥ 𝜀

1−(𝛿𝑘−𝜀) ≥ 𝜀,
and so the probability that Algorithm 3 aborts in step 2 is at most (1− 𝜀)𝑡 ≤ 𝜖0/10 if 𝑡 = 1

𝜀 ln
10
𝜖0

.

By Lemma 5.10, the probability that 𝑐𝑖 = ⊥ for any 𝑖 is at most 4𝑘𝐾
√︀
𝛿 = 4𝑘

√︀
𝛿 · ⌈ 2𝜏 ln

1
𝛿
⌉ ≤

9𝑘
𝜏 ·

√︀
𝛿 ln 1

𝛿
≤ 20𝑘

𝜏 ·
3
√︀
𝛿 = 𝜖0/10.

By Lemma 5.10, the state 𝜌 at the beginning of iteration 𝑖* of Step 3 has Pr[ℳ𝑖*(𝜌) < 𝛿𝑖
*−2𝜀] =

𝑂(𝐾𝛿) ≤ 𝜖0/10. Then, again by Lemma 5.10, the state 𝜌′ at the end of iteration 𝑖* of Step 3
has ℳ𝑖*(𝜌

′) ≥ 𝛿𝑖 − 2𝐾𝜀 with probability 1 − 𝜖0/10 −
√︀
𝜏 + 𝜀+ 𝛿 ≥ 1 − 𝜖0/5. It then follows by

Lemma 5.9 that Tr( ̃︀𝐺𝑖*𝜌
′) ≥ 𝛿𝑖*−2𝐾𝜀− 𝜖0/5 ≥ 𝛿𝑖

*− 𝜖0/4. We also have thatℳ𝑖*−1(𝜌
′) ≤ 𝛿𝑖*−1− 𝜀

with probability 1− 𝜏 − 𝜀− 𝛿, from which it follows that Tr(Π
̃︀𝐺𝑖*−1

>𝛿𝑖*−1𝜌
′) ≤ 𝜏 + 𝜀+ 2𝛿 ≤ 𝜖20/16.

Let 𝜎 := Π
̃︀𝐺𝑖*−1

>𝛿𝑖*−1𝜌
′Π

̃︀𝐺𝑖*−1

>𝛿𝑖*−1/Tr(Π
̃︀𝐺𝑖*−1

>𝛿𝑖*−1). By gentle measurement, td(𝜌′, 𝜎) ≤ 𝜖0/4. By Lemma 4.6,
applying 𝖠𝗆𝗉 (Algorithm 1) to 𝜎 with parameters 𝜏 = 1− 𝜖0

𝛿𝑖*
≥ 1− 𝜖/4, 𝜇 = 𝜖/4 yields an adversary

that succeeds with probability at least (1− 𝜖/4)3𝛿 ≥ (1− 𝜖)𝛿 ≥ 𝛿− 𝜖, and runs in time poly(𝑘, 1
𝛿𝑘
, 1𝜖 ).
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6 Barriers to parallel repetition beyond 3-message protocols

In this section we show that, under a cryptographic assumption, for every 𝑘 there exists a constant
round quantum interactive protocol such that the 𝑘-fold parallel repetition of the protocol has the
same soundness as the original protocol. Before introducing the interactive quantum protocol, we
need to define post-quantum bit commitment schemes and non-malleability.

6.1 Post-quantum bit commitments

We begin by describing post-quantum bit commitments similar to how they are described in [CCY21].
At a high level, interactive quantum bit commitments are quantum interactive protocols executed
between a sender and receiver. Post-quantum bit commitments describe a special form of general
quantum bit commitments where the protocol is entirely classical but security holds against quantum
adversaries. Since the messages are entirely classical we will not use the quantum register notation
used in the rest of the paper for the sake of simplicity. To talk about the security of post-quantum
bit commitments, we must first define computational indistinguishability. We say that two families
of random variables, indexed by 𝜆, 𝒳 = {𝒳𝜆} and 𝒴 = {𝒴𝜆} are computationally indistinguishable,
denoted 𝒳 ≈𝑐 𝒴 if for all polynomial-time quantum adversaries (𝐴𝜆)𝜆,⃒⃒⃒⃒

Pr
𝑥∼𝒳𝜆

[𝐴𝜆(𝑥) accepts]− Pr
𝑦∼𝒴𝜆

[𝐴𝜆(𝑦) accepts]
⃒⃒⃒⃒
≤ negl(𝜆) .

For a post-quantum commitment scheme between a sender 𝐴 = (𝐴𝜆)𝜆 and receiver 𝐵 = (𝐵𝜆)𝜆,
denote by 𝖮𝖴𝖳𝑆(𝑚,𝐴,𝐵) and 𝖮𝖴𝖳𝑅(𝑚,𝐴,𝐵) the random variables corresponding to the classical
strings held in the private workspace registers at the end of the commit phase when the sender
is committing to the message 𝑚, where the randomness is over the internal randomness of the
algorithm. Let 𝜏(𝑚,𝐴,𝐵) be the public transcript (i.e. an ordered list of messages sent). We now
define the hiding and binding properties of post-quantum commitments.

Definition 6.1 (Hiding property of post-quantum bit commitments). Let 𝐴 be the algorithm that
performs an honest execution of the sender in a post-quantum bit commitment. The post-quantum
bit commitment is computationally hiding if for all polynomial-time quantum adversaries 𝐵 = (𝐵𝜆)𝜆,

𝖮𝖴𝖳𝑅(0, 𝐴,𝐵) ≈𝑐 𝖮𝖴𝖳𝑅(1, 𝐴,𝐵) .

At a high level, the hiding property means that any bounded receiver can not tell if they are
receiving a commitment to 0 or 1.

Definition 6.2 (Binding property of post-quantum commitments). Let 𝖮𝖴𝖳𝑏
𝑅 and 𝜏 𝑏 be the private

receiver workspace and public transcript after an execution of a post-quantum commitment scheme
where the sender committed to 𝑏. Let 𝖠𝖢𝖢𝖤𝖯𝖳𝜆(𝖮𝖴𝖳

𝑏
𝑅, 𝜏

𝑏, 𝐴) be the bit corresponding to whether or
an honest receiver accepts in the reveal phase when the sender acts according to the algorithm 𝐴,
conditioned on the receiver having private workspace distributed as 𝖮𝖴𝖳𝑏

𝑅, and public transcript 𝜏 𝑏 in
the commit phase, and 𝖱𝖤𝖵𝖤𝖠𝖫(𝖮𝖴𝖳𝑏

𝑅, 𝜏
𝑏, 𝐴) be the bit that is revealed to the receiver in the same

context. The post-quantum commitment scheme is binding if for all polynomial time non-uniform
quantum adversaries 𝐴,

Pr[𝖱𝖤𝖵𝖤𝖠𝖫(𝖮𝖴𝖳𝑏
𝑅, 𝜏

𝑏, 𝐴) = 1− 𝑏 and 𝖠𝖢𝖢𝖤𝖯𝖳(𝖮𝖴𝖳𝑏
𝑅, 𝜏

𝑏, 𝐴) = 1] ≤ negl(𝜆) . (13)
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𝑚0
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Sender
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𝑚𝑟

{Accept, Reject}

Figure 2: An 𝑐, 𝑟-message post-quantum bit commitment scheme. In a post-quantum bit commitment,
all messages are classical, but the sender might be quantum.

At a high level, the binding property means that a bounded adversary can not switch their
commitment from 𝑏 to 1− 𝑏 after the commit phase.

Now we turn our attention to post-quantum interactive protocols with a specific type of security.
The notion of security that we will care about is called non-malleability [DDN91]. At a high level, a
post-quantum commitment scheme is non-malleable if any bounded man-in-the-middle adversary
can not modify a commitment into another valid commitment in a systematic way (i.e. they may be
able to output commitments to random bits, or forward commitments they receive). We say that
the man-in-the-middle adversary receives commitments on the left and sends their commitments on
the right. When discussing man-in-the-middle attacks against interactive protocols, there are two
additional concepts we need to introduce: tags and schedules.

A tag-based commitment scheme is one where in addition to 𝜆, the sender receives a classical tag
𝗍𝗀𝜆 ∈ {0, 1}𝑡(𝜆), which we assume (w.l.o.g.) is contained in the sender’s initial workspace register
(i.e. the sender starts with |𝑏⟩ ⊗ |𝗍𝗀𝜆⟩ ⊗ |0⟩), and the receiver’s private workspace register after
the commit phase. For a fixed sequence of tags 𝗍𝗀 = {𝗍𝗀𝜆}𝜆, we require that the corresponding
family of commitment schemes satisfy hiding and binding. At a high level, a tag is meant to prevent
an adversary from forwarding communication from the left to the right, in the sense that we will
make the definitions such that in order for an adversary to break the non-malleable property of a
commitment scheme, we will require that the man in the middle uses different tags in the left and
right commitments.

For man-in-the-middle adversaries, a schedule refers to the sequence of messages sent in the left
and right that the adversary accepts. In this paper we define non-malleability with respect to a
specific schedule, which we call 𝗌𝖼𝗁𝖾𝖽𝗎𝗅𝖾, defined by Figure 3. Certain post-quantum bit commitments
might be secure against more general schedules, or even all schedules, but any scheme that is secure
against this schedule will suffice for our result.

Definition 6.3 (Many-to-many synchronous non-malleable property of commitment scheme). Let
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Man in the MiddleLeft Right

𝖬𝗂

𝖬𝗂
′

𝖱′𝗂

𝖱𝗂

Figure 3: Schedule of messages sent in 𝗌𝖼𝗁𝖾𝖽𝗎𝗅𝖾. The schedule is chosen specifically so that an
adversary might forward commitments to other challengers, in particular the left and right always
send their messages first, before expecting a response. In Algorithm 4, both the left and right are
executed by the challenger, and the adversary executes the man-in-the-middle strategy.

𝒞 be a post-quantum, tagged, commitment scheme. For a man-in-the-middle quantum adversary
𝐴 = (𝐴𝜆)𝜆, that receives 𝑙 commitments on the left and outputs commitments to the 𝑙′ bits on
the right according to the schedule 𝗌𝖼𝗁𝖾𝖽𝗎𝗅𝖾, let 𝗆𝗂𝗆𝐴

𝒞 (𝜆, 𝑥) denote the random variable over the
private workspace of the adversary and the message bits it outputs, (𝖮𝖴𝖳𝑆(𝑚𝑖, 𝐴,𝑅),𝑚)𝑖≤𝑙′ , where
𝑚 is the 𝑙′ bits that the adversary commits to on the right, where 𝑅 is an honest execution of the
receiver, whenever the 𝑙 bits being committed to on the left are 𝑥. Let 𝗆𝗂𝗆𝐴

𝒞 (𝜆, 𝑥) = ⊥ whenever the
adversary uses the tag that the original commitment used. We assume that the adversary commits to
each 𝑚𝑖 individually using the bit commitment scheme. A post-quantum bit commitment scheme is
one-to-many non-malleable if

𝗆𝗂𝗆𝐴
𝒞 (𝜆, 𝑥1) ≈𝑐 𝗆𝗂𝗆𝐴

𝒞 (𝜆, 𝑥2)

for all message on the left, 𝑥1 and 𝑥2.

The use of the word many-to-many indicates that the adversary can receive any number of
commitment on the left, and commits to many bits on the right. Being non-malleable means no
matter what joint distribution over bits the adversary commits to on the right, the state of the
adversary and bits committed to on the right is indistinguishable when the left commits to 0 versus
1. We note that we define 𝗆𝗂𝗆 to take the value ⊥ whenever the adversary re-uses the tag to allow
for the “un-interesting” case when the adversary does not try to tamper with the commitment.

6.2 Parallel repetition fails for 4-message quantum interactive protocols

We show that, if there exists a (𝑐+𝑟)-message post-quantum interactive bit commitment scheme that
satisfies one-to-many non-malleability, then the following protocol is a 2(𝑐+ 𝑟)-message quantum
interactive protocol such that the soundness does not change after 𝑘 repetitions. The protocol
involves the challenger and adversary simultaneously making commitments to each other, and
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then revealing their commitments, with the adversary winning if they can “flip” the challengers
commitment. At a high level, the challenger and adversary will do the following: The challenger will
begin by sending a message corresponding to the next message of commitment to 𝑘−1 copies of a bit
𝑏 from the challenger to the adversary. Before the adversary sends to response to this message, the
adversary and challenger will compute and send (in parallel) the next message of 𝑘− 1 commitments
from the adversary to the challenger. After doing this, the adversary will send their response to the
challenger’s initial commitment. Formally, assume that a (𝑐+ 𝑟)-message commitment scheme exists
and consider the following protocol:

Algorithm 4. 𝑘-fold unrepeatable challenger

Input: Security parameter 𝜆, tag 𝗍𝗀.

1. Sample a bit 𝑏 uniformly at random.

2. Repeat ⌈𝑐/2⌉ times:

(a) The challenger sends the next message in 𝑘 − 1 commitments to 𝑏.

i. The adversary sends the next message in the commitments to 𝑘 − 1 many bits.
ii. The challenger sends their response to the 𝑘−1 commitments from the adversary.

(b) The adversary sends the responses to the challengers commitments to 𝑏.

3. Check that the adversary does not use the tag 𝗍𝗀. If not, reject.

4. Repeat ⌈𝑟/2⌉ times:

(a) The challenger sends the next message in 𝑘 − 1 reveals to 𝑏.

i. The adversary sends the next message in the reveal to 𝑘 − 1 many bits.
ii. The challenger sends their response to the 𝑘 − 1 reveals from the adversary.

(b) The adversary sends the response to the challengers reveals to 𝑏.

5. Let {𝑐𝑖}𝑘−1𝑖=0 be the bits that the adversary revealed. Accept if

(a) ⊕𝑘−1
𝑖=0 𝑐𝑖 ̸= 𝑏 and

(b) Every commitment sent by the adversary is accepted.

The use of the doubly indented bullet points is meant to highlight that steps 2a and 2b correspond
to an execution of the commitment scheme, and steps 2(a)i and 2(a)ii correspond to another execution
of the commitment scheme, interwoven with the first. Note that in the final iteration of each loop,
the response might be an empty message (for example, if the final message the commitment or reveal
stages has already been sent). With this, it is clear that Algorithm 4 is a 2(𝑐+ 𝑟)-message protocol if
the commitment scheme involves exchanging 𝑐 messages in the commit stage and 𝑟 messages in the
reveal stage. We will show that both Algorithm 4 and the 𝑘-fold parallel repetition of Algorithm 4
have soundness 1/2, assuming that the commitment scheme satisfies certain properties.

Lemma 6.4. Assume that 𝒞 is a post-quantum commitment scheme satisfying one-to-many non-
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malleability. Then for every 𝑘, and every polynomial-time quantum adversary 𝐴, there exists a
negligible function 𝜖 such that the probability that 𝐴 is accepted by the challenger executing Algorithm 4
is at most

1

2
+ 𝜖(𝜆) . (14)

Proof. Assume for the sake of contradiction that there is an adversary (𝐴𝜆)𝜆 that is accepted by the
challenger with advantage 1/𝑝(𝜆) for some polynomial 𝑝(·). We are going to construct an adversary
for the non-malleability property of 𝒞 as follows: The challenger on the left commits to the string
𝑏𝑘−1 using 𝑘 − 1 copies of the commitment scheme (here 𝑏 can be either 0 or 1). The adversary
then runs 𝐴 on the commitments from the left to receive a commitment to a string of length 𝑘 − 1,
denoted ̃︀𝑚. By step 3, we can assume that all of the commitments in used to commit to ̃︀𝑚 use a
different tag than the challenger’s.

By the assumption about 𝐴, ̃︀𝑚 has parity 1 − 𝑏 with probability 1/2 + 1/𝑝(𝜆). Thus, with
probability 1/2 + 1/𝑝(𝜆), the message string in 𝗆𝗂𝗆𝐴

𝒞 (0
𝑘−1, 𝜆) has XOR 1, and the message string

in 𝗆𝗂𝗆𝐴
𝒞 (1

𝑘−1, 𝜆) has XOR 0. Thus, the two distributions are distinguishable with non-negligible
advantage by an polynomial-time adversary that accepts if the messages sent to the right have even
parity. Thus, if there is an adversary that succeeds in Algorithm 4 with non-negligible advantage, 𝒞
is not many-to-many non-malleable, a contradiction.

Next we show that there is a adversary that is accepted with probability 1/2 in the 𝑘-fold parallel
repetition of Algorithm 4. At a high level, for each challenger in the 𝑘-fold parallel repetition, the
adversary will forward commitments from all 𝑘 − 1 other challengers to them. If the XOR of all
of the committed bits is equal to 1, every bit that the adversary commits to will be 𝑏⊕ 1, and the
adversary will win every game in the 𝑘-fold repetition.

Lemma 6.5. For every commitment scheme 𝒞, there exists an adversary that accepted with probability
1/2 in the 𝑘-fold parallel repetition of Algorithm 4, when all 𝑘 repetitions are given unique tags 𝗍𝗀.

Proof. In step 2a of Algorithm 4, the challenger sends 𝑘 − 1 messages to the adversary. In the
𝑘-fold parallel repetition, we will denote by 𝑚𝑖,𝛼

𝑙 the 𝛼𝑡 commitment sent from the 𝑖𝑡 repetition of
the protocol, and similarly for responses. Consider the following adversary for the 𝑘-fold parallel
repetition of Algorithm 4.
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Algorithm 5. Adversary for 𝑘-fold repetition of Algorithm 4.

Input: Security parameter 𝜆.

1. For 𝑙 from 0 to ⌊𝑐/2⌋:

(a) Receive 𝑘 messages, {𝑚0,𝛼
𝑙 }𝛼∈[𝑘−1], . . . , {𝑚

𝑘−1,𝛼
𝑙 }𝛼∈[𝑘−1] from the challengers.

i. To every challenger 𝑖, send the 𝑘 − 1 messages {𝑚𝑗+𝑖 mod 𝑘,𝑗+1 mod 𝑘
𝑙 }𝑗∈[1:𝑘].

ii. From challenger 𝑖, receive 𝑘− 1 responses, {𝑟𝑗+𝑖 mod 𝑘,𝑗+1 mod 𝑘
𝑙 }𝑗∈[1:𝑘] from the

challengers.

(b) To every challenger 𝑖, send the 𝑘 − 1 responses {𝑟𝑖,𝛼𝑙 }𝛼∈[𝑘−1].

(The challengers reveal bits 𝑏0, . . . 𝑏𝑘. To each challenger 𝑖 the adversary
reveal {𝑏𝑗}𝑗 ̸=𝑖.)

2. For 𝑙 from 0 to ⌊𝑟/2⌋:

(a) Receive 𝑘 messages, {𝑚0,𝛼
𝑙 }𝛼∈[𝑘−1], . . . , {𝑚

𝑘−1,𝛼
𝑙 }𝛼∈[𝑘−1] from the challengers.

i. To every challenger 𝑖, send the 𝑘 − 1 messages {𝑚𝑗+𝑖 mod 𝑘,𝑗+1 mod 𝑘
𝑙 }𝑗∈[1:𝑘].

ii. From challenger 𝑖, receive 𝑘− 1 responses, {𝑟𝑗+𝑖 mod 𝑘,𝑗+1 mod 𝑘
𝑙 }𝑗∈[1:𝑘] from the

challengers.

(b) To every challenger 𝑖, send the 𝑘 − 1 responses {𝑟𝑖,𝛼𝑙 }𝛼∈[𝑘−1].

We first note that Algorithm 5 runs in polynomial time and always produces valid commitments to
the bits that it announces, and assuming that all of the challengers used unique tags, every challenger
sees commitments that use unique tags.

Let 𝐵 = ⊕𝑘−1
𝑗=0𝑏𝑗 be the XOR of all of the bits that the challengers committed to. Because the

adversary announces to every challenger, 𝑗, the bits of the other challengers (not including 𝑗), the
adversary announces bits that XOR to

(︁⨁︀
𝑙 ̸=𝑗 𝑏𝑙

)︁
= 𝑏𝑗 ⊕ 𝐵, to the 𝑗𝑡 repetition of the protocol.

If 𝐵 = 1, Algorithm 5 wins all of the repetitions of Algorithm 4. Since every challenger samples a
bit uniformly at random, this happens with probability 1/2. Thus the adversary is accepted in the
𝑘-fold repetition of Algorithm 4 with probability 1/2.

If 𝑐 = 𝑟 = 1, then we say that a quantum bit commitment is non-interactive. Classical non-
interactive, non-malleable bit commitments are known to exist in a number of settings and from
a wide variety of assumptions [LPS20], and there is no formal evidence ruling out the existence
of post-quantum (or fully quantum) non-interactive non-malleable bit commitments. Under this
assumption, combined with the previous claims, we have the following corollary.

Corollary 6.6. If there exists a non-interactive post-quantum bit commitment scheme satisfying
one-to-many non-malleability, then there is a 4-message quantum interactive protocol for which
parallel repetition fails.

Thus, it can not be the case that both non-interactive one-to-many non-malleable commitments
exist, and that strong parallel repetition, where the soundness for the 𝑘-fold parallel repetition
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goes down as 𝜖𝑘, holds 4-message quantum interactive protocols. If one believes that these kinds of
commitments do exist, then the 3-message parallel repetition theorem proved here is tight. However
this argument only shows that for every fixed 𝑘, there exists a protocol for which soundness of the
(exactly) 𝑘-fold parallel repetition stays high. It could still be the case that for every 4-message
protocol, there exists a large 𝑘 for which the soundness of the 𝑘-fold parallel repetition of the protocol
has negligible soundness. We leave the task of ruling out this (weaker) form of parallel repetition as
an open question.

7 Round compression for quantum argument systems

A quantum interactive argument is a special type of quantum interactive proof where the completeness
and soundness conditions hold with respect to computationally efficient provers. Formally, a promise
decision problem 𝐿 = (𝐿𝑦𝑒𝑠, 𝐿𝑛𝑜) admits a quantum interactive argument with completeness 𝑐 and
soundness 𝑠 if there exists a polynomial-time quantum verifier 𝑉 and a polynomial-time quantum
“honest” prover 𝑃 such that

1. For all 𝑥 ∈ 𝐿𝑦𝑒𝑠 there exists a quantum advice state |𝜓𝑥⟩ such that 𝑃 given |𝜓𝑥⟩ interacting
with 𝑉 on input 𝑥 gets accepted with probability at least 𝑐;

2. For all polynomial-time “malicious” provers 𝑃 *, for all 𝑥 ∈ 𝐿𝑛𝑜, for all quantum advice states
|𝜓𝑥⟩, the prover 𝑃 * interacting with 𝑉 on input 𝑥 gets accepted with probability at most 𝑠.

In other words, the quantum protocol that the verifier 𝑉 engages in is 𝑠-computationally secure
when 𝑉 is given “no” instances from 𝐿𝑛𝑜.

In this section we prove a round compression result for quantum interactive arguments. It was
proved by Kitaev and Watrous in [KW00] that every 𝑚-round quantum interactive proof (i.e. were
the prover has unbounded computational power) for a (promise) language 𝐿 can be compressed
into another interactive proof for 𝐿 that only has 3 messages and the soundness is worsened by a
factor poly(𝑚). By parallel repetition, the soundness can be improved back to a constant [KW00].
This stands in contrast to the classical case, where an analogous round compression technique for
interactive proofs is unknown and considered unlikely.

We prove an analogue of the Kitaev–Watrous compression procedure for interactive arguments:

Theorem 7.1 (Round compression for quantum interactive arguments). Let 𝐿 be a promise language
with an 𝑚(𝑛)-message quantum interactive argument with completeness 𝑐 and soundness 𝑠 for 𝑚 ≥ 3.
Then there exists a 3-message quantum interactive argument for 𝐿 with completeness 1 − 2(1−𝑐)

𝑚−1
and soundness 1− 1−𝑠

(𝑚−1)4 . Furthermore, if the original prover has complexity 𝑡𝑃 and verifier has
complexity 𝑡𝑉 , then the compressed protocol has prover complexity 𝑚𝑂(1)(𝑡𝑃 + 𝑡𝑉 ) and verifier
complexity 𝑚𝑂(1)𝑡𝑉 .

We follow the proof approach of Kempe et al. [KKMV07] (see also [VW16]) who gave an iterative
procedure to round-compress quantum proof systems (whereas the original Kitaev-Watrous proposal
achieved the compression in one step). The idea as follows: given a (2𝑟 + 1)-message “original”
protocol, one can obtain an (𝑟 + 1)-message “compressed” protocol where the prover first sends
the intermediate state of the verifier at round 𝑟 + 1 of the original protocol (i.e., the midpoint).
The verifier in the compressed protocol randomly decides whether to play the original protocol
forwards or backwards to check respectively whether the original verifier would have accepted, or
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was initialized properly. Our protocol is similar in spirit to this reduction, except that we must
slightly tweak the reduction and analysis to ensure that the reduction is efficient.

Remark 7.2. In the quantum interactive proof setting, the assumption of perfect completeness on
the original protocol is not necessary, because every quantum interactive proof can be transformed
to have perfect completeness (see [KW00] and [VW16]). However we do not know whether quantum
arguments can be generically transformed to have perfect completeness.

Remark 7.3. To maintain consistency with existing work regarding interactive proofs and arguments,
in this section we adopt the terminology “verifier”, “honest prover”, and “adversary” (or malicious
prover). The verifier corresponds to the challenger in an interactive argument. When talking about
completeness, the honest prover corresponds to the adversary, and when talking about soundness we
still use the term adversary.

Remark 7.4. When we refer to the total run-time of an efficient adversary in an interactive argument,
as the total time it takes to execute the entire interaction between the adversary and the challenger.
If every action the adversary takes is polynomial time, then the total run-time will be a polynomial
in 𝑛 as well.

We first describe a “round-halving” compression procedure that transforms a verifier for a (2𝑟+1)-
message protocol to a verifier for an equivalent (𝑟 + 1)-message protocol (in the completeness and
soundness sense). Our reduction adds at most a constant overhead to the gate complexity of the
verifier. At the end, we will iterate this procedure logarithmically many times to obtain a 3-message
protocol.

Let {𝐶𝑖}𝑖≤𝑟 be a verifier in a (2𝑟 + 1)-message quantum interactive protocol. We describe a
(𝑟 + 1)-message protocol and analyse its completeness and soundness. We briefly recall the notation
used to describe quantum interactive arguments. 𝖠𝗂 denotes the adversaries private workspace in
round 𝑖, 𝖬𝑖 denotes the message register sent from the adversary to the challenger, and 𝖱𝗂 denotes
the response register sent from the challenger to the adversary. The adversary applies the unitary 𝐴𝑖

on 𝖠𝗂𝖱𝗂−𝟣 to get a state on 𝖠𝗂+𝟣𝖬𝗂, and the verifier applies a unitary 𝐶𝑖 on 𝖶𝗂𝖬𝗂 to get a state on
𝖶𝗂+𝟣𝖱𝗂. In the final round, the challenger applies a POVM {𝐷, id−𝐷} on 𝖶𝗋𝖬𝗋 to decide whether
to accept or reject.
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Algorithm 6. Verifier for (𝑟 + 1)-message compressed protocol

1. Receive registers 𝖬𝑟/2𝖶𝑟/2 from the adversary. Flip a unbiased coin.

2. If the outcome of the coin flip is heads:

(a) Run the original 2𝑟 + 1-message protocol starting from interaction 𝑟/2, i.e. apply
unitary 𝐶𝑟/2 to registers 𝖬𝑟/2𝖶𝑟/2, send the result of the coin flip and 𝖱𝑟/2 to the
adversary, and continue for interactions 𝑟/2 + 1 through 𝑟.

(b) After 𝑟/2 many interactions, receive register 𝖬𝗋, measure Π on registers 𝑀𝑟𝖶𝑟.
Accept if the measurement accepts.

3. If outcome of the coin flip is tails:

(a) Run the original 2𝑟 + 1-message protocol in reverse, i.e. send the result of the coin
flip and 𝖬𝑟/2 back to the adversary, receive register 𝖱𝑟/2−1 from the adversary, apply
(𝐶𝑟/2−1)

† to 𝖱𝑟/2−1𝖶𝑟/2, and continue for interactions 𝑟/2− 1 through 1.

(b) After 𝑟/2 many interactions, receive register 𝖱1. Apply (𝐶1)
† on registers 𝖱1𝖶2 to

get registers 𝖬0𝖶0, and measure |0⟩⟨0|𝖶0
. Accept if the measurement accepts.

Claim 7.5 (Completeness). If there is an non-uniform (resp. uniform) honest prover (denoted
the original honest prover) that succeeds in the original (2𝑟 + 1)-message protocol with probability
1− 𝜖, then there is a non-uniform (resp. uniform) honest prover that succeeds in the (𝑟+ 1)-message
compressed protocol with probability 1− 𝜖/2. Furthermore, if the original protocol has running time
𝑡𝑃 , 𝑡𝑉 for the prover and the verifier, then the new protocol has running time 𝑂(𝑡𝑃 + 𝑡𝑉 ) for the
prover and 𝑂(𝑡𝑉 ) for the verifier.

Proof. Let 𝐴𝑖 be unitary operations that the honest prover implements in the 𝑖’th interaction.
Specifically, the honest prover applies 𝐴𝑖 to registers 𝖱𝑖−1𝖠𝗂 to get a message register 𝖬𝗂 and new
private register 𝖠𝗂+𝟣, and then sends 𝖬𝑖 to the verifier. Initially, 𝖱0 is an empty register, and
𝖠𝟢 is initialized to some state |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|𝖠0

(in the non-uniform case this might be an advice state,
otherwise |0⟩⟨0|).

The honest prover for the compressed protocol will essentially implement the honest strategy,
applying the unitaries of the un-compressed honest prover forward or backwards depending on the
outcome of the verifier’s coin flip. The honest prover begins by performing preparing a register 𝖶𝟢

in the state |0⟩𝖶𝟢
, and then performs 𝐴0, 𝐶0, 𝐴1, 𝐶1, . . . , 𝐴𝑟/2 to the appropriate registers to get a

state over registers 𝖠𝗋/𝟤+𝟣𝖬𝗋/𝟤𝖶𝗋/𝟤. The honest prover then sends 𝖬𝗋/𝟤𝖶𝗋/𝟤 to the challenger as
their initial message.

If the outcome of the verifier’s coin flip is heads, the honest prover applies 𝐴𝑟/2+1 to the verifier’s
response, and continues as the un-compressed honest prover would starting from round (𝑟/2) + 1.
After all 𝑟/2 interactions, the verifier and honest prover hold the state after implementing the
unitaries 𝐴0, 𝐶0, . . . , 𝐴𝑟 on the initial state |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|𝖠𝟢

⊗|0⟩⟨0|𝖶𝟢
and then measuring 𝐷 on registers

𝖬𝗋𝖶𝗋. Since the original protocol accepted with probability 1− 𝜖, we have that

Tr(𝐷(𝐴𝑟𝐶𝑟−1 . . . 𝐶0𝐴0)(|𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|𝖠0
⊗ |0⟩⟨0|𝖶𝟢

)(𝐴†0𝐶
†
0 . . . 𝐶

†
𝑟−1𝐴

†
𝑟)) = 1− 𝜖 .
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Thus, the probability that the honest prover is accepted is also 1− 𝜖.
If the outcome of the verifier’s coin flip is tails, when the honest prover receives register 𝖬𝗂,

the honest prover applies (𝐴𝑖)
† to 𝖬𝗂𝖠𝗂+𝟣 and sends registers 𝖱𝑖−1 to the verifier, and continues by

applying the inverse of the un-compressed honest prover unitary, going backwards in round number.
When the protocol reaches the final message, the honest prover and verifier will have performs the
inverse of 𝐶0, 𝐴1, 𝐶1, . . . , 𝐴𝑟/2 to yield some state |𝜓⟩𝖬𝟢𝖠𝟣

⊗ |0⟩𝖶𝟢
. When the verifier measures |0⟩⟨0|,

the measurement will accept with probability 1.
So with probability 1/2, the honest prover is accepted with probability 1− 𝜖, and with probability

1/2 the honest prover is accepted with probability 1. Thus, the overall probability that the honest
prover is accepted is 1− 𝜖/2.

To analyze the runtime of the honest prover, note that the honest prover for the compressed
protocol applies every unitary 𝐴𝑖 at most twice, and runs the first verifier’s unitaries 𝐶𝑖 at most
once. The verifier runs every 𝐶𝑖 at most once, so together they run every 𝐴𝑖 and 𝐶𝑖 at most twice,
so its total running time of the protocol is at most twice the total running time of the original honest
prover. We note that the compressed honest prover can be implemented by controlling the 𝐴𝑖 and
𝐶𝑖 on the message register (so that they act correct controlled on the outcome of the verifier’s coin
flip). If the honest prover can only use 2-qubit gates, this might result in a constant multiplicative
overhead to the gate complexity of the honest prover.

Claim 7.6 (Soundness). If there is a adversary that has total run-time 𝑡 that succeeds in the
(𝑟 + 1)-message compressed protocol with probability 1− 𝜖, then there is an adversary that has total
run-time 𝑂(𝑡+ 𝑡𝑉 ) and succeeds in the original (2𝑟 + 1)-message protocol with probability 1− 16𝜖.

Proof. We can assume that 𝜖 ≤ 1/16, otherwise the claim is trivially true. Assume that the adversary
for the (𝑟 + 1)-message compressed protocol implements an initial unitary 𝐴0 on register 𝖠𝟢, which
is initialized in state |𝖺𝗎𝗑⟩𝖠𝟢

. Call the output registers of this unitary 𝖠𝗋/𝟤+𝟣𝖬𝗋/𝟤𝖶𝗋/𝟤, of which
𝖬𝗋/𝟤𝖶𝗋/𝟤 are sent to the challenger as the adversary’s first message. After seeing the result of the coin
flip, 𝑏 ∈ {𝐻,𝑇}, from the challenger, we denote by 𝐴𝑏

𝑖 the unitaries that the adversary implements
in interactions 𝑖 = 1 through 𝑟/2. We say that the unitary 𝐴𝐻

𝑖 acts on registers 𝖱𝗋/𝟤+𝗂−𝟣𝖠𝗋/𝟤+𝗂 (so
that the first one acts on registers 𝖱𝗋/𝟤𝖠𝗋/𝟤+𝟣 and counts up from there) and the unitary 𝐴𝑇

𝑖 acts
on registers 𝖬𝗋/𝟤−𝗂+𝟣𝖠𝗋/𝟤−𝗂+𝟤 (so that the first one acts on registers 𝖬𝗋/𝟤𝖠𝗋/𝟤+𝟣). The challengers
actions in the game are specified in Algorithm 6. Define the following projectors.

Π𝐻 = (𝐴†0𝐶
†
𝑟/2𝐴

𝐻
1
†
𝐶†𝑟/2+1 . . . 𝐴

𝐻†
𝑟/2)𝐷𝖬𝗋𝖶𝗋(𝐴

𝐻
𝑟/2 . . . 𝐶𝑟/2+1𝐴

𝐻
1 𝐶𝑟/2𝐴0) ,

Π𝑇 = (𝐴†0𝐴
𝑇
1
†
𝐶𝑟/2−1 . . . 𝐴

𝑇 †
𝑟/2𝐶

†
0)(id⊗ |0⟩⟨0|𝖶𝟢

)(𝐶†0𝐴
𝑇
𝑟/2 . . . 𝐶

†
𝑟/2−1𝐴

𝑇
1𝐴0) .

It is clear that Tr(Π𝐻 |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|) and Tr(Π𝑇 |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|) are the probabilities that the adversary
is accepted when the result of the challenger’s coin flip is 𝐻 and 𝑇 respectively. By assumption,
the adversary is accepted in the 𝑟 + 1-message compressed protocol with probability 1− 𝜖, so the
adversary must be accepted in the protocol if the coin flip is fixed to being either heads or tails with
probability at least 1− 2𝜖. Therefore we have the inequalities

Tr(Π𝐻 |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|) ≥ 1− 2𝜖 ,

Tr(Π𝑇 |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|) ≥ 1− 2𝜖 .

Now we construct an adversary for the original (2𝑟 + 1)-message protocol as follows:
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Algorithm 7. Adversary for the (2𝑟 + 1)-message protocol

Input: Initial state |𝖺𝗎𝗑⟩.

1. Run 𝐴0 to receive a state on registers 𝖠𝗋/𝟤+𝟣𝖬𝗋/𝟤𝖶𝗋/𝟤. Implement unitaries
𝐴𝑇

1 , 𝐶
†
𝑟/2−1 . . . , 𝐴

𝑇
𝑟/2, 𝐶

†
0 to receive a state on registers 𝖬𝟢𝖶𝟢. Measure id ⊗ |0⟩⟨0|𝖶0

,
if the measurement fails, abort. If it accepts, send register 𝖬𝟢 to the verifier.

2. For steps 𝑖 = 1 through 𝑟/2:

(a) Run (𝐴𝑇
𝑟/2−𝑖)

† to get the next message register and send it to the verifier.

3. For steps 𝑖 = 𝑟/2 + 1 through 𝑟:

(a) Run 𝐴𝐻
𝑖−𝑟/2 to get the next message register and send it to the verifier.

Let 𝜌𝑇 be the state of the adversary after measuring Π𝑇 on |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑| and accepting. Let 𝜌𝐻
be the state after measuring Π𝐻 on |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑| and accepting. By the gentle measurement lemma
(Proposition 3.3) and the definition of the squared Bures distance, we have that the the following
inequalities

dBures(𝜌𝑇 , |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|) ≤ 2(1−
√
1− 2𝜖) ≤ 3𝜖 ,

dBures(𝜌𝐻 , |𝖺𝗎𝗑⟩⟨𝖺𝗎𝗑|) ≤ 3𝜖 .

Here the first inequality holds for any 0 ≤ 𝜖 ≤ 4
9 . Using the weak triangle inequality for the squared

Bures distance (Proposition 3.5), we have that

dBures(𝜌𝐻 , 𝜌𝑇 ) ≤ 12𝜖 .

By the definition of the squared Bures distance, we have that

F(𝜌𝐻 , 𝜌𝑇 ) ≥ (1− 6𝜖)2 ≥ 1− 12𝜖 , (15)

where we applied the Bernoulli inequality here. Now we examine the state of the adversary in the
un-compressed game. If the un-compressed adversary does not abort in step 1, after step 2, the
adversary is left with exactly 𝜌𝑇 , because they condition on |0⟩⟨0|𝖶𝟢

accepting. At the end of the
protocol, the challenger will have implemented the measurement Π𝐻 on the adversary’s state after
step 2, 𝜌𝑇 . Since Π𝐻 is a projector and 𝜌𝐻 is the post-measurement state of some initial state after
measuring Π𝐻 , we have that Tr(Π𝐻𝜌𝐻) = 1. Applying Proposition 3.4 and Equation (15), we have
that Tr(Π𝐻𝜌𝑇 ) ≥ F(𝜌𝐻 , 𝜌𝑇 ) ≥ 1 − 16𝜖. Thus, the adversary is accepted with probability at least
1− 16𝜖. By assumption, the first measurement in the step succeeds with probability (1− 2𝜖), thus
the total probability of failure is given by

2𝜖+ (1− 2𝜖) · 12𝜖 ≤ 16𝜖 .

The un-compressed adversary applies every the unitaries 𝐴𝑇
𝑖 (and (𝐴𝑇

𝑖 )
†) two times, the unitaries

𝐶†𝑖 once, and the unitaries 𝐴𝐻
𝑖 once. Thus the total run time of the adversary is 𝑂(𝑡+ 𝑡𝑉 ) accounting

for constant multiplicative overheads in implementing controlled unitaries.
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Proof of Theorem 7.1. To prove the theorem, we iterate the round-halving procedure. Let 𝐿 =
(𝐿𝑦𝑒𝑠, 𝐿𝑛𝑜) be a (promise) decision language with a quantum interactive proof 𝜋 where for inputs of
length 𝑛, the protocol has 𝑚(𝑛) messages. We assume without loss of generality that 𝑚(𝑛) is of
the form 2𝑘(𝑛) + 1; the adversary and challenger can send empty messages at the beginning of the
protocol. In other words, 𝑘 = ⌈log(𝑚− 1)⌉ and 2𝑘−1 < 𝑚− 1 ≤ 2𝑘.

Let 𝜋′ denote protocol that applies the round-halving procedure described above 𝑘 − 1 times. In
other words, when the challenger receives input 𝑥, it first computes the description of the challenger
for the (2𝑘−1+1)-message protocol (where 𝑛 = |𝑥|), and then based on this computes the description
of the challenger for the (2𝑘−2 + 1)-message protocol, and so forth, until it obtains a challenger for a
3-message protocol. Since 𝑚(𝑛) is polynomial in 𝑛, 𝑘 = 𝑂(log 𝑛). The final honest prover runs in
time 𝑚𝑂(1)(𝑡𝑃 + 𝑘𝑡𝑉 ) and the verifier runs in time 𝑚𝑂(1)𝑡𝑉 , where the 𝑂(1) factors here are exactly
the constant multiplicative overhead above.

We now analyze the completeness and soundness of the 3-message protocol. Given a “yes” instance
𝑥 ∈ 𝐿𝑦𝑒𝑠, by definition there is an adversary that is accepted with probability 𝑐 = 1−𝛿. By Claim 7.5,
there is an adversary for the 2𝑘(𝑛)−1+1-message protocol that is accepted with probability 1− 𝛿/2.
Repeating the compression 𝑘 − 1 times, there exists an adversary that is accepted by the 3-message
protocol with probability

1− 𝛿

2𝑘−1
≥ 1− 2𝛿

𝑚(𝑛)− 1
.

Given a “no” instance 𝑥 ∈ 𝐿𝑛𝑜, the original protocol accepts with probability at most 𝑠 = 1− 𝜖
for all efficient adversaries. Then by Claim 7.6, the soundness of the 2𝑘(𝑛)−1 + 1-message protocol is
at most 1− 𝜖/16. Similarly the soundness of the 2𝑘(𝑛)−1 + 1-message protocol is at most 1− 𝜖/162.
Iterating this we see that the 3-message protocol has soundness at most

1− 𝜖

16𝑘−1
≤ 1− 𝜖

(𝑚− 1)4
.

We note that all of the reductions are efficient, even after 𝑘 − 1 iterations of round collapse.
Specifically, for “no” instances, if there is an adversary for the compressed protocol that has total run-
time 𝑡(𝑛), then there is an adversary for the original protocol that has total run-time 𝑚𝑂(1)(𝑡+ 𝑘𝑡𝑉 ),
which is efficient.

We can slightly extend our round compression to compile any 3-message quantum interactive
argument into a public coin argument using the same strategy as [MW05, Theorem 5.4]. A public
coin quantum interactive argument is a quantum interactive argument where all of the challenger
messages are uniformly random coin flips. At a high level, if we were to apply round compression
starting with a 3-message protocol, the challenger only ever needs to receive one register (either 𝖱0

to go backwards, or 𝖬1 to go forwards) from the adversary, so they do not need to send back a
quantum register as in round compression for 𝑚 > 3. Formally, we have the following.

Theorem 7.7 (Compilation to public coin). Let 𝐿 be a promise language with a 3-message quantum
interactive argument with completeness 𝑐 and soundness 𝑠. Then there exists a 3-message public coin
quantum interactive argument for 𝐿 with completeness 1− 1−𝑐

2 and soundness 1− 1−𝑠
16 .

Proof. Let (𝐶0,Π) be a challenger for a 3-message quantum interactive protocol. Consider the
following challenger for a 3-message protocol.
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Algorithm 8. Challenger for 3-message public coin protocol

1. Receive registers 𝖶1 from the adversary. Flip a unbiased coin and send it to the adversary.

2. If the outcome of the coin flip is heads:

(a) The adversary sends register 𝖬1.

(b) Measure Π on 𝖬1𝖶1, accept if the measurement accepts.

3. If outcome of the coin flip is tails:

(a) The adversary sends register 𝖱0.

(b) Perform 𝐶†0, and measure |0⟩⟨0| on registers 𝖶0, accept if the measurement accepts.

This protocol is clearly public coin, as the challenger only sends the outcome of a single coin
flip to the adversary. An honest adversary runs the original 3-message protocol up to the first two
messages and sends the challenger’s private workspace to the challenger. Upon seeing heads they
perform the honest adversary unitary and send 𝖬1, and upon seeing tails they send back 𝖱0 to the
challenger. A similar argument as Claim 7.5 shows that the completeness behaves the same way as
applying a single round of round compression.

Similarly, given an adversary for the public coin protocol, a malicious adversary for the original
protocol can simulate the interaction between the public coin adversary and the challenger, and
measure the challenger’s private workspace to get |0⟩⟨0|𝖶0

, and then get a suitable state on 𝖬0 to
send to the challenger. From there they run the public coin adversary, conditioned on seeing tails, in
reverse for one step, and then the public coin adversary, conditioned on seeing heads, forward for
one step. The same argument as in Claim 7.6 shows that the soundness of the public coin protocol
is equivalent to having applied round compression one additional step.

The run-time of the adversary in both directions is multiplied by a constant factor in the reduction,
so the reduction is efficient.

Finally, we combine Theorems 7.1 and 7.7 with our hardness amplification result to show that
all polynomial-message quantum interactive arguments can be compressed into 3-message quantum
interactive arguments with negligible soundness.

Corollary 7.8 (Parallelization and amplification for quantum interactive arguments). Let 𝐿 be a
(promise) language that has a polynomial-message quantum interactive argument with completeness
𝑐 ≥ 1− negl(𝑛) (or 1, respectively) and soundness 𝑠 ≤ 1− 1

poly(𝑛) . Then there is a 3-message public
coin quantum interactive argument for 𝐿 with completeness 1 − negl(𝑛) (or 1, respectively) and
soundness negl(𝑛).

We remark that this parallel repetition is not as efficient as what is possible classically. Classically,
to amplify any interactive argument (say of soundness 1

2 to soundness 1
4) while preserving round

complexity 𝑟, the state of the art incurs a multiplicative cost of order either 𝑟 [BHT20] or 𝜆 [CL10],
where 𝜆 is a security parameter. Turning back to quantum interactive arguments, we note that
we can first round collapse the argument into three messages (if it has more than three messages),
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which only incurs a constant multiplicative overhead, and then apply the three-message soundness
amplification. In the end, the cost of the overall compiled protocol is Ω(𝑟4), since we need to make
up for the loss in soundness in the round collapse theorem. A more careful analysis of Claim 7.6
could improve the exponent from log 16 = 4 down to log 10 ≈ 3.32 but we leave as future work to
further improve the amplification efficiency.

8 Applications

The parallel repetition theorem has many immediate applications in cryptography, from boosting
the security of commitments, to round reduction for zero-knowledge proofs.

8.1 Strong amplification of quantum bit commitment schemes

Here we show that the security of canonical quantum bit commitment schemes can be amplified
through parallel repetition. While we have already defined bit commitments and notions of post-
quantum security, here we review canonical quantum bit commitment schemes, and the standard
notions of security they are described by, honest hiding and binding

Canonical quantum bit commitments. A canonical quantum bit commitment is a kind of
non-interactive bit commitment scheme. The scheme consists of two quantum circuits 𝐶0, 𝐶1, to
commit to be a bit 𝑏, the sender generates the bipartite pure state |𝜓𝑏⟩𝖢𝖱 = 𝐶𝑏 |0 . . . 0⟩ and sends the
𝖢 register of |𝜓𝑏⟩. To reveal, the sender sends 𝖱 to the receiver, along with the bit 𝑏. The receiver
can then verify the original bit 𝑏 by applying the circuit 𝐶†𝑏 and measuring |0 . . . 0⟩. Importantly,
Yan [Yan22] showed that all quantum commitment schemes can be compiled to this canonical
form while preserving honest hiding and binding security, and honest security for canonical form
commitments is equivalent to the stronger standard security notions. Throughout this section we
focus on canonical quantum commitment schemes.

The honest hiding property of a commitment scheme guarantees that an adversarial receiver can
not reveal the bit committed to before the reveal phase. Formally,

Definition 8.1 (Honest hiding property of commitment scheme). Let 𝜖(𝜆) denote a function. We
say that a commitment scheme (𝜋𝜆)𝜆 satisfies 𝜖-computational (resp. 𝜖-statistical) honest hiding if
for all non-uniform polynomial-time algorithms (resp. for non-uniform algorithms) 𝐴 = (𝐴𝜆)𝜆 that
take as input the receiver’s register immediately after an honest execution of the commit stage of 𝜋𝜆,
the following holds for sufficiently large 𝜆:⃒⃒⃒

Pr[𝐴𝜆(𝜌𝜆,0) = 1]− Pr[𝐴𝜆(𝜌𝜆,1) = 1]
⃒⃒⃒
≤ 𝜖(𝜆) .

Here, 𝜌𝜆,𝑏 denotes the reduced density matrix of the receiver’s register after a honest execution of the
commit stage of 𝜋𝜆 when the sender is committing to 𝑏. If 𝜖 is a negligible function of 𝜆 then we
simply say that the scheme satisfies strong computational (resp. statistical) hiding. If 𝜖(𝜆) ≤ 1− 1

𝑝(𝜆)

for some polynomial 𝑝(𝜆) we say it satisfies weak computational (resp. statistical) hiding.

The honest binding property, at a high level, says that after the commit phase of a commitment
scheme, an adversarial sender can only reveal to the bit that they committed to. Formally,
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Definition 8.2 (Honest binding property of commitment scheme). Let 𝜖(𝜆) denote a function. We
say that a commitment scheme (𝜋𝜆)𝜆 satisfies 𝜖-computational (resp. 𝜖-statistical) honest binding if
for all non-uniform polynomial-time algorithms (resp. for all non-uniform algorithms) 𝐴 = (𝐴𝜆)𝜆
that take as input the sender’s register immediately after an honest execution of the commit stage of
𝜋𝜆, the following holds for sufficiently large 𝜆:

F
(︁(︁
𝐴𝜆 ⊗ id𝖢

)︁
(𝜓𝜆,0), 𝜓𝜆,1

)︁
≤ 𝜖(𝜆) ,

where 𝜓𝜆,𝑏 denotes the state of the joint sender-receiver system after an honest execution of the
commit stage of 𝜋𝜆 when the committed bit is 𝑏.

If 𝜖 is a negligible function of 𝜆 then we simply say that the scheme satisfies strong computational
(resp. statistical) honest binding. Otherwise if 𝜖(𝜆) ≤ 1− 1

𝑝(𝜆) for some polynomial 𝑝(·) we say that
it satisfies weak computational (resp. statistical) honest binding.

Parallel repetition of quantum bit commitments. We show that parallel repetition can be
used to amplify weak computationally binding (and strong statistically hiding) commitments into
commitments where both hiding and binding are strong.

Corollary 8.3. Let {𝐶𝜆,𝑏}𝜆,𝑏 be a canonical commitment scheme satisfying the
(︁
1− 1

𝑝(𝜆)

)︁
-

computational honest binding property for some polynomial 𝑝(·), and strong statistical hiding. Then
there exists a polynomial 𝑞(·) such that the commitment scheme {𝐶⊗𝑞(𝜆)𝜆,𝑏 }𝜆,𝑏 satisfies the strong
computational honest binding property and strong statistical hiding property.

Proof. The computational honest binding property of (canonical) quantum commitments can be
equivalently viewed as the maximum winning probability of the following 2-message game (over
efficient adversaries):

1. The challenger commits to 0, and sends the reveal register to the adversary.

2. The adversary sends back a reveal register.

3. The challenger accepts if applying 𝐶𝜆,1 and measuring in the computational basis yields |0𝜆⟩.

The maximum winning probability of this game is exactly the fidelity present in Definition 8.2.
By Lemma 4.6, no non-uniform adversary can win the parallel repeated game with probability
non-negligibly greater than (1− 1

𝑝(𝜆))
𝑞(𝜆) = negl(𝜆). Thus, the repeated commitment satisfies strong

computational honest binding. Since 𝑞 is polynomial, the game still satisfies strong statistical
hiding.

We can also amplify commitments that satisfy weak computational hiding (instead of binding)
using flavor switching [GJMZ23, HMY23], which we state below.

Proposition 8.4 ([HMY23, Theorem 7]). Let 𝜖(𝑛), 𝛿(𝑛) be functions. If {𝐶𝜆,𝑏}𝜆,𝑏 is an 𝜖-
computationally (resp. statistical) hiding and 𝛿-statistical (resp. computational) binding commit-
ment scheme, then there exists a

√
𝛿-statistical (resp. computational) hiding and 𝜖-computationally

(resp. statistical) binding commitment scheme.

Corollary 8.5. The existence of either strong statistical hiding, weak computational honest binding,
or strong statistical honest binding and weak computational hiding commitments imply standard
commitments.
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Proof. The first part of the corollary is the previous corollary, the second part is a direct implication
of flavor switching for commitments.

This resolves an open problem from Yan [Yan22] about the strong amplification of the Uhlmann
transformation problem (equivalently quantum bit commitments). We can push this result slightly
to allow for amplification of some commitment schemes that have both weak security against both
parties.

Corollary 8.6. Let {𝐶𝜆,𝑏}𝜆,𝑏 be a canonical commitment scheme satisfying the
(︁
1− 1

𝑝(𝜆)

)︁
-

computational honest binding property for some polynomial 𝑝(·), and 1
𝑞(𝜆) weak computational

hiding, where 𝑞(𝜆) ≥ 2𝜆𝑝(𝜆). Then standard commitments exist.

Proof. From Lemma 4.6, the 𝜆𝑝(𝜆)-fold parallel repetition of the commitment has binding error
(1 − 1

𝑝(𝜆))
𝜆𝑝(𝜆) + negl(𝜆) ≤ 𝑒−𝜆 + negl(𝜆), and thus satisfies strong honest binding property, and

the 𝜆𝑝(𝜆)
𝑞(𝜆) ≤

1
2 -weak hiding property by hybrid argument. We can then apply flavor switching

to get a commitment that is satisfies the strong computational hiding property and the 1
2 -weak

computational binding property. The 𝜆-fold parallel repetition of this commitment then satisfies the
strong computational binding property too.

For example, a scheme which is 1
2 -binding and 𝜆−1-hiding can be amplified to a fully-secure

commitment in this way. We leave as an open question whether an 𝛼-binding, 𝛽-hiding quantum
commitment can be amplified for some constant 𝛼, 𝛽; classically, this is known for 𝛼 + 𝛽 ≤
1− 1/poly(𝜆), which is tight for black-box constructions [HS11].

8.2 Quantum XOR lemma

XOR lemma for commitments. By examining the flavor switching technique for quantum
commitments closely, we can get an XOR lemma for quantum commitments, which states that one
can amplify the computational hardness of breaking the hiding property of a quantum commitment
via the XOR repetition of a computationally hiding commitment scheme. In the context of classical
commitments, the 𝑘-fold XOR repetition of a commitment 𝐶 is a new commitment 𝐶⊕𝑘 where to
commit to bit 𝑏 ∈ {0, 1}, the sender will send commitments (using the “base commitment” 𝐶) to
𝑥1, . . . , 𝑥𝑘 for a randomly chosen string 𝑥 ∈ {0, 1}𝑘 with parity 𝑏. It was shown by Yao [Yao82,
GNW11] that if 𝐶 was originally 𝜖-computationally hiding against classical adversaries, then 𝐶⊕𝑘 is
𝑂(𝜖𝑘)-computationally hiding. We now show that a quantum version of the XOR repetition applied
to canonical quantum commitments does indeed amplify the hiding security of the commitment.

Let 𝐶 = {𝐶𝜆,𝑏}𝜆,𝑏 be a canonical quantum commitment scheme that is 𝜖-computational hiding
and 𝛿-statistically binding. Define the XOR repetition 𝐶⊕𝑘 = {𝐶⊕𝑘𝜆,𝑏}𝜆,𝑏 to be the following quantum
commitment scheme. Letting |𝜓𝜆,𝑏⟩ = 𝐶𝜆,𝑏 |0 · · · 0⟩ for all 𝜆, 𝑏, we define the circuits 𝐶⊕𝑘𝜆,𝑏 so that the
corresponding states |𝜓⊕𝑘𝜆,𝑏⟩ are

|𝜓⊕𝑘𝜆,𝑏⟩𝖱𝖢 :=
1√
2𝑘−1

∑︁
𝑥∈{0,1}𝑘:|𝑥|=𝑏mod2

|𝑥⟩ ⊗ |𝜓𝜆,𝑥1⟩𝖱𝟣𝖢𝟣
⊗ · · · ⊗ |𝜓𝜆,𝑥𝑘

⟩𝖱𝗄𝖢𝗄
.

In other words, the XOR-repeated commitment to 𝑏 is the uniform superposition, over all 𝑘-bit strings
𝑥 with parity 𝑏, of commitments to 𝑥1, 𝑥2, . . . , 𝑥𝑘. This state can be efficiently prepared by first
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preparing uniform superposition on 𝑥1, ..., 𝑥𝑘−1 and then coherently compute 𝑥𝑘 = 𝑥1⊕· · ·⊕𝑥𝑘−1⊕𝑏.
The commitment register (resp. reveal register) of the XOR-repetition is the concatenation of the
commitment register (resp. reveal register plus an extra register storing 𝑥) of all the individual
commitments.

Lemma 8.7 (XOR lemma for quantum commitments). If the commitment 𝐶 is 𝜖-computational
hiding and 𝛿-statistically binding, then the XOR repetition 𝐶⊕𝑘 is (𝜖𝑘/2 + negl)-computational hiding
and (𝑘

√
𝛿)-statistically binding.

Proof. By applying flavor switching for quantum commitments (Proposition 8.4) to 𝐶 to obtain
a commitment 𝐶 that is

√
𝛿-statistical hiding and 𝜖-computational binding. The corresponding

commitment states have the following form:

|𝜓𝜆,𝑏⟩ =
1√
2

(︁
|0⟩ ⊗ |𝜓𝜆,0⟩+ (−1)𝑏 |1⟩ ⊗ |𝜓𝜆,1⟩

)︁
where the commitment register of |𝜓𝜆,𝑏⟩ is the reveal register of |𝜓𝜆,𝑏⟩ and the reveal register is
everything else (including the extra ancilla qubit).

Now we take the parallel repetition of 𝐶 to get 𝐶⊗𝑘; the corresponding commitment states have
the following form:

|𝜓⊗𝑘𝜆,𝑏⟩ =
1√
2𝑘

∑︁
𝑥∈{0,1}𝑘

(−1)|𝑥| |𝑥⟩ ⊗ |𝜓𝜆,𝑥1⟩ ⊗ · · · ⊗ |𝜓𝜆,𝑥𝑘
⟩ .

By Theorem 5.1 we get that 𝐶⊗𝑘 is (𝑘
√
𝛿)-statistical hiding (by hybrid argument) and (𝜖𝑘 + negl)-

computational binding.
Now we flavor switch back to get our final commitment, which with the construction of Proposi-

tion 8.4 happens to be the XOR repeated commitment 𝐶⊕𝑘. We get that 𝐶⊕𝑘 is thus a (𝜖𝑘/2+negl)-
computational hiding and (𝑘

√
𝛿)-statistical binding commitment. Furthermore, it is easy to check

that the corresponding commitment states |𝜓⊕𝑘𝜆,𝑏⟩ have the desired form. This completes the proof.

We remark that due to the commitment duality [HMY23], parallel repetition theorem and
XOR lemma for commitments are reducible to each other with very little cost, while classically the
reduction to parallel repetition from XOR lemma requires majority [SV08]. The reason we are able
to do this more efficiently quantumly can be understood as we are replacing the Goldreich–Levin
part [GL89] in the reduction (or the duality construction) with quantum Goldreich–Levin [AC02],
which is much more efficient.

Another consequence is polarization for EFI pairs [BCQ23]: pairs of efficient mixed states that
are 𝛽-weakly statistically distinguishable but 𝛼-weakly computationally indistinguishable where
𝛽2 ≫

√
𝛼, for example, when 𝛼 = 1

4 and 𝛽 = 3
4 .

Corollary 8.8 (EFI polarization). If there exist weak EFI pairs that are 𝛽-weakly statistically
distinguishable but 𝛼-weakly computationally indistinguishable such that 𝛽2 −

√
𝛼 is at least constant,

then standard EFI pairs exist.

Proof. In fact a stronger statement is true: assuming we have computational XOR lemma that
amplifies to 𝜖𝑐𝑘 + negl for constant 1

2 ≤ 𝑐 ≤ 1 and 𝛽2 − 𝛼𝑐 is at least constant, then EFI pairs exist.
Therefore, a tighter commitment duality (without the square root loss) would give better polarization
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parameters as well. To prove this, Watrous’ construction and proof of 𝖰𝖲𝖹𝖪 polarization [Wat02,
Theorem 1] immediately adapts to this setting, except that for we use 𝛼𝑐 instead of 𝛼 when picking
the number of repetition.

For completeness, we reproduce the proof here. We write cd(𝜌0, 𝜌1) ≤ 𝛼 to mean that states
𝜌0 and 𝜌1 are 𝛼-computationally indistinguishable. Let 𝑟 = ⌈log(8𝜆)/ log(𝛽2/𝛼𝑐)⌉ = 𝑂(log 𝜆) and
𝑠 = ⌊𝛼−𝑐𝑟/2⌋ = 𝜆𝑂(1). We first apply 𝑟-fold XOR to these states giving 𝜌′0, 𝜌

′
1, then we have

that cd(𝜌′0, 𝜌
′
1) ≤ 𝛼𝑐𝑟 + negl and td(𝜌′0, 𝜌

′
1) ≥ 𝛽𝑟 [Wat02, Lemma 2]. Next we apply 𝑠-fold parallel

repetition to them giving 𝜌′′0, 𝜌′′1, and obtain that cd(𝜌′′0, 𝜌
′′
1) ≤ 1

2 + negl by hybrid argument, and
td(𝜌′′0, 𝜌

′′
1) ≥ 1 − 𝑒1−2𝜆 following the same computation as Watrous. Applying 𝜆-fold XOR again

completes the construction.

XOR lemma for quantum predicates. Yao’s classical XOR lemma states that taking the XOR
of many copies of a Boolean predicate amplifies average-case hardness of prediction. We can similarly
use our XOR lemma to amplify unpredictability of quantum predicates.

An (average-case) quantum predicate is defined to be a Hermitian matrix 𝜌 with trace 0 and
Schatten 1-norm at most 2. By Jordan–Hahn decomposition, this gives a bijection to the YES
instances 𝜌+ and the NO instances 𝜌− such that 𝜌 = 𝜌+ − 𝜌−, with trace Tr(𝜌+) = Tr(𝜌−) ≤ 1
and orthogonal support 𝜌+𝜌− = 0 (so that the unpredictability is not caused by the input being a
superposition over YES and NO). (A worst-case extension of this is given by the promise Boolean
observable sgn 𝜌.) We say the predicate 𝜌 is 𝜖-unpredictable if for all efficient observables 0 ≼ 𝑃 ≼ id
with advice 𝜎, its advantage Tr(𝑃 (𝜌⊗ 𝜎)) = Tr(𝑃 (𝜌+ ⊗ 𝜎))− Tr(𝑃 (𝜌− ⊗ 𝜎)) ≤ 𝜖.

The advantage of this notation (other than capturing everything with a single matrix) is that the
𝑘-fold XOR of 𝜌 is simply 𝜌⊗𝑘, since for any two matrices 𝜌0, 𝜌1, (𝜌0−𝜌1)⊗𝑘 =

∑︀
𝑥∈{0,1}𝑘(−1)|𝑥|𝜌𝑥1⊗

· · · ⊗ 𝜌𝑥𝑘
. The following corollary gives an XOR lemma for quantum predicate indistinguishability.

Corollary 8.9 (Quantum Yao’s XOR lemma). Let 𝜌 be an 𝜖-unpredictable predicate. Then 𝜌⊗𝑘 is
(𝜖𝑘/2 + negl)-unpredictable.

Proof. There is a bijection between every quantum state distinguishing problem (𝜌0, 𝜌1) and an
average-case problem of implementing a quantum predicate 𝜌 = 𝜌0 − 𝜌1, where in the backwards
mapping, 𝜌0, 𝜌1 can be taken to be 𝜌++(1−Tr(𝜌+))·id, 𝜌−+(1−Tr(𝜌+))·id respectively. Furthermore,
the distinguishing advantage of 𝑃 against 𝜌0 vs 𝜌1 is exactly Tr(𝑃 (𝜌0 ⊗ 𝜎)) − Tr(𝑃 (𝜌1 ⊗ 𝜎)) =
Tr(𝑃 (𝜌⊗ 𝜎)) for any 𝑃, 𝜎. We complete the proof by invoking Lemma 8.7.

8.3 Security amplification for public-key quantum money

Another direct corollary of our main result (Theorem 5.1) is security amplification for public-key
quantum money schemes. We first define public-key quantum money.

Public-key quantum money. Public-key quantum money, informally, is a scheme in which a
trusted bank can efficiently generate an unlimited number of quantum banknotes, everyone can verify
a valid banknote, and no efficient adversary can produce counterfeit bank notes with non-negligible
success probability. Formally,

Definition 8.10 (Public-key quantum money). A public-key quantum money scheme is a triple of
efficient quantum algorithms 𝒮 = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝗂𝗇𝗍,𝖵𝖾𝗋) where
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• 𝖪𝖾𝗒𝖦𝖾𝗇 takes as input the security parameter 1𝜆 and outputs a private/public key pair
(𝑘private, 𝑘public),

• 𝖬𝗂𝗇𝗍(𝑘private) outputs a pair (𝑠, 𝜌$) where 𝑠 is a string representing a serial number and 𝜌$ is
a quantum state representing a bank note, and

• 𝖵𝖾𝗋 takes as input the public key 𝑘public, a serial number 𝑠, and an alleged banknote 𝜎, and
either accepts or rejects.

A public-key quantum money scheme 𝒮 satisfies correctness if for all 𝜆,

Pr

[︂
𝖵𝖾𝗋(𝑘public, 𝑠, 𝜌$) accepts : (𝑘private, 𝑘public)← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)

(𝑠, 𝜌$)← 𝖬𝗂𝗇𝗍(𝑘private)

]︂
≥ 1− negl(𝜆) .

The scheme 𝒮 is 𝜖-secure if for all efficient adversaries 𝐴, the success probability of 𝐴 in the
counterfeit security game (Algorithm 9) is at most 𝜖(𝜆).

Algorithm 9. Counterfeit security game challenger

1. Generate (𝑘private, 𝑘public)← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆), (𝑠, 𝜌$)← 𝖬𝗂𝗇𝗍(𝑘private) and send (𝑘public, 𝑠, 𝜌$).

[Adversary returns two registers 𝖠𝖡 in some entangled state 𝜎𝖠𝖡.]

2. Run 𝖵𝖾𝗋(𝑘public, 𝑠, 𝜎𝖠) and 𝖵𝖾𝗋(𝑘public, 𝑠, 𝜎𝖡). If either reject, reject, otherwise accept.

More money, fewer problems. Aaronson and Christiano [AC13] raised the question of whether
there exists a general security amplification procedure for public-key quantum money schemes. They
exhibited a procedure based on amplitude amplification that (for a class of schemes where the
verification is a rank-1 projection) reduces the soundness error of 𝖵𝖾𝗋 from a constant to negligible.
However, we note that this is different than reducing the soundness error of the counterfeit security
game. Their construction is only amplifies the success probability of the counterfeiter per serial
number, in the sense that if the original 𝖵𝖾𝗋 would have rejected an alleged banknote with constant
probability, the new 𝖵𝖾𝗋 will accept the same alleged banknote with negligible probability. As a
consequence, it would not amplify a weakly secure scheme where the proposed quantum money is
unclonable for half of the serial numbers but trivially clonable for the other half.

We show that the parallel repetition of a quantum money scheme indeed achieves security amplifica-
tion for all weak quantum money schemes. More precisely, let 𝒮𝑛 denote the 𝑛-fold parallel repetition
of the quantum money scheme 𝒮, with algorithms (𝖪𝖾𝗒𝖦𝖾𝗇𝑛,𝖬𝗂𝗇𝗍𝑛,𝖵𝖾𝗋𝑛). The algorithm 𝖪𝖾𝗒𝖦𝖾𝗇𝑛

algorithm runs 𝑛 independent instances of 𝖪𝖾𝗒𝖦𝖾𝗇 to get pairs (𝑘
(1)
private, 𝑘

(1)
public), . . . , (𝑘

(𝑛)
private, 𝑘

(𝑛)
public),

and treats the tuple of individual private keys (resp. public keys) as a large private key (resp. public
key) for 𝒮𝑛. The algorithm 𝖬𝗂𝗇𝗍𝑛 takes as input the tuple of private key and runs 𝖬𝗂𝗇𝗍(𝑘

(𝑖)
private)

for 𝑖 = 1, . . . , 𝑛 to obtain 𝑛 pairs (𝑠(1), 𝜌
(1)
$ ), . . . , (𝑠(𝑛), 𝜌

(𝑛)
$ ); the output serial number is the tuple

(𝑠(1), . . . , 𝑠(𝑛)) and the output bank note is the concatenation (𝜌
(1)
$ , . . . , 𝜌

(𝑛)
$ ). Finally the algorithm

𝖵𝖾𝗋𝑛 will simply run 𝖵𝖾𝗋(𝑘
(𝑖)
public, 𝑠

(𝑖), 𝜌
(𝑖)
$ ) for 𝑖 = 1, . . . , 𝑛 and accept if they all accept.
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It is clear that if the base money scheme 𝒮 satisfies correctness, so does the repeated scheme 𝒮𝑛
(provided that the number of repetitions 𝑛 is polynomial in the security parameter 𝜆). Next, the
security game for the repeated scheme 𝒮𝑛 is the 𝑛-fold parallel repetition of the security game for the
base scheme 𝒮. Since the security game is a 3-message quantum interactive protocol, Theorem 5.1
directly implies the following:

Corollary 8.11 (Security amplification for public-key quantum money schemes). Let 𝒮 be an
𝜖-secure public-key quantum money scheme. Then 𝒮𝑛 is an (𝜖𝑛 + negl)-secure public-key quantum
money scheme.

We note that the same argument essentially generalizes to any quantum cryptographic primitive
with a security game consisting of at most three messages. So far we have already considered two
examples (commitments and money) where the security game has two messages. Another notable
example is quantum lightning [Zha21], a potentially stronger primitive than quantum money where
the bank may not be able to produce two copies of the same banknote, also admits exponential
security amplification via parallel repetition. This is because the security game for quantum lightning
is also a two-message quantum interactive protocol.

8.4 3-message quantum zero knowledge

Weakly sound protocols also naturally occur in the context of zero knowledge protocols. An important
template for constructing zero knowledge protocols is the Σ-protocol. At a high level, a Σ-protocol is
a three-message protocol with inverse polynomial soundness (bounded away from 1), zero knowledge,
and where the verifier’s message is uniformly random. Σ-protocols where the prover and verifier are
quantum are sometimes called Ξ-protocols [BG22]).

Definition 8.12 (Quantum Σ-protocol). A quantum Σ-protocol for a language 𝐿 is a public coin
with 𝑂(log |𝑥|) random bits of challenge, quantum interactive proof system the following additional
property called computational zero knowledge defined as follows. There exists a polynomial time
quantum simulator 𝖲𝗂𝗆 that takes as input a string 𝑥 and randomness 𝑟, and outputs a pair of
quantum states (𝜌, 𝜎) such that

{(𝜌, 𝜎) : (𝜌, 𝜎)← 𝖲𝗂𝗆(𝑥, 𝑟)}𝑟 ≈𝑐 {(𝜌, 𝜎) : (𝜌, 𝜎)← 𝑉 (𝑥)⇆𝑟𝑃 (𝑥, |𝜓𝑥⟩)}𝑟

where (𝜌, 𝜎)← 𝑉 (𝑥)⇆𝑟𝑃 (𝑥, |𝜓𝑥⟩) denotes the mixed state of the message registers that the honest
prover 𝑃 sends, conditioned on the challenger’s randomness being 𝑟.

Note that in the context of classical and post-quantum zero knowledge proofs, Σ-protocol in
addition requires special soundness, which we intentionally omit here. Furthermore, below we also
slightly abuse this notation to also include discussions of statistical zero knowledge arguments that
follow this template.

While a Σ-protocol for all languages in 𝖰𝖬𝖠 is already known [BG22] and can be constructed
from minimal assumptions [BCQ23], the round collapse theorem also allows us to construct these
differently by unconditionally compiling any honest-verifier zero knowledge protocol into a Σ-protocol.
As before, using our round collapse theorem can be advantageous (over building one from scratch by
e.g. invoking [BG22]) for preserving certain properties of the original protocol like succinctness.

Corollary 8.13. For any language 𝐿 that admits an 𝑚-message honest-verifier quantum statistical
(resp. computational) zero knowledge protocol and computational (resp. statistical) soundness, 𝐿 also
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admits a malicious-verifier quantum statistical (resp. computational) zero knowledge protocol with
3 messages and computational (resp. statistical) soundness 1− 1/poly. Furthermore, the verifier’s
message is a coin flip, and the verifier and communication complexity only blows up by 𝑚𝑂(1).

Proof sketch. The statement for computational zero knowledge proofs is already proven by [Kob08,
Theorem 34], and generalizing this to arguments is straightforward with Theorems 7.1 and 7.7. For
completeness, we sketch the proof strategy here.

The first step of the construction is to apply the round collapse theorem (Theorem 7.1) to the
original protocol. We first show honest-verifier zero knowledge is preserved at each step in the
iteration of Theorem 7.1, and thus the final protocol is honest-verifier zero knowledge. This can be
seen as the honest verifier’s view at round 𝑖 (out of 𝑟 + 1 rounds) is simply a random bit 𝑏 (except
for the first round where 𝑏 is uninitialized) along with the precompiled verifier’s view at round
𝑟 + 1 + (−1)𝑏 · (𝑖− 1).

In order to have malicious-verifier zero knowledge, we need to compile this protocol into a
Σ-protocol where the verifier’s second message is a single coin flip. To do this, we apply Theorem 7.7.
Honest verifier zero knowledge is still preserved since the view after round 1 is identical to the
original view at round 2, and the view after round 3 is a random bit 𝑏 along with the original view
at round 2 + (−1)𝑏.

Finally, to show malicious-verifier zero knowledge, we can use the honest-verifier zero knowledge
simulator to simulate the honest transcript and then apply Watrous rewinding [Wat09] to the
malicious verifier.

Thus we have round-collapsed the protocol while preserving relevant properties except soundness
error. To get back the same level of soundness, the natural approach is to apply 𝑚𝑂(1)-fold parallel
repetition. While the protocol after parallel repetition is unlikely to be zero knowledge [HLR21],
witness indistinguishability (as well as honest-verifier zero knowledge) is preserved via a standard
hybrid argument. We thus arrive at the following.

Corollary 8.14. For any language 𝐿 that admits an 𝑚-message honest-verifier quantum statistical
(resp. computational) zero knowledge protocol and computational (resp. statistical) soundness, 𝐿 also
admits a malicious-verifier statistical (resp. computational) witness indistinguishable protocol with
3 messages and negligible computational (resp. statistical) soundness. Furthermore, the verifier is
public coin, and the verifier and communication complexity only increases by a multiplicative 𝑚𝑂(1)

factor.

We leave as future work to improve this to a stronger security, which is beyond the scope of
this work. For starters, we conjecture that this class of 3-message protocols is already witness
hiding even for instances with unique witness [DSYC18]. Another direction is to consider recovering
zero knowledge by further augmenting the protocol like classically. For example, we expect one
could combine Corollary 8.14 with [Yan23] using (instance-dependent) commitments to compile a
computational zero knowledge proof down to 4 messages (with coherent expected-QPT simulation
[LMS22]5). It is plausible that further ideas could even yield a constant-round transform for statistical
zero knowledge arguments.

5It is known that constant-round post-quantum zero knowledge cannot be achieved with “standard” expected-QPT
simulators [CCLY21]. We leave as an open problem to investigate whether this impossibility generalizes to quantum
protocols.
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8.5 Simpler construction of commitments from undecodable black holes

Finally, we give a more intuitive one-page proof of a theorem from [Bra23]. The work by Braker-
ski [Bra23] showed that the existence of EFI/commitments is equivalent to the existential hardness
of black-hole radiation decoding, as formulated by Hayden and Harlow [HH13].

Black hole radiation decoding. First, we recall the setting. A radiation state is an efficiently
preparable quantum state |𝜓⟩𝖧𝖡𝖱. We are promised that is that it is statistically possible to extract
a qubit from 𝖱 that is maximally entangled with 𝖡, but computationally hard to do so with success
probability non-negligibly greater than some threshold 𝛿 ≪ 1. Note that 𝛿 ≥ 1

4 always since that is
the trivial success probability that can always be achieved by outputting a constant 0 qubit.

Commitments from undecodable states, simplified. [Bra23] constructs an undecodable
radiation state from a commitment in a straightforward way: consider the overall pure state where
we simply use a statistically-binding quantum state commitment (like the folk-lore construction
[GJMZ23]) to commit to a half of an EPR pair; we assign the other half of EPR being the qubit
𝖡, the commitment register being the prior radiation 𝖱, and the reveal register being the rest of
the black hole 𝖧. However, the construction of EFI from undecodable states is much more involved.
Their construction on a high level is constructing a canonical-form commitment that is weakly
statistically binding but strongly computationally hiding. In order to argue computational hiding,
they have to develop additional tools like superdense decoding.

We give, from undecodable radiation states, an alternative construction of commitments that
is instead weakly computationally binding but strongly statistically hiding with a tighter analysis
(since our parallel repetition theorem is tight); furthermore, it can be viewed as the dual construction
for the converse direction. The construction of the bit commitment is as follows:

• Prepare the radiation state along with the EPR pair |𝜓⟩𝖧𝖡𝖱 ⊗ |Ψ+⟩𝖢𝖣.

• To commit to 0, send registers 𝖧𝖡.

• To commit to 1, send registers 𝖧𝖣.

This is statistically hiding, since by statistical decodability and monogamy of entanglement, after
tracing out 𝖱, the state on 𝖧𝖡 is close to a product state where 𝖡 is maximally mixed. On the other
hand, the task of breaking honest computational binding (from 0 to 1) is exactly on input register 𝖱
and an (unrelated) EPR pair 𝖢𝖣, output a state such that the overall state looks like 𝖧𝖣⊗ 𝖱𝖢𝖡.
In other words, this “teleports” out the entanglement in 𝖧 to 𝖡 into 𝖢, and now the register 𝖧 is
maximally entangled with 𝖣 instead. In particular, the output 𝖢 register would be correctly entangled
with the test qubit, and thus we conclude that this is computationally 𝛿-binding. Combining this
with the computational amplification (given that 𝛿 is inverse-polynomially bounded away from 1),
we obtain a construction of EFI via parallel repetition and commitment flavor switching.
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