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Abstract

State transformation problems such as compressing quantum information or breaking quan-
tum commitments are fundamental quantum tasks. However, their computational difficulty
cannot easily be characterized using traditional complexity theory, which focuses on tasks with
classical inputs and outputs.

To study the complexity of such state transformation tasks, we introduce a framework for
unitary synthesis problems, including notions of reductions and unitary complexity classes. We
use this framework to study the complexity of transforming one entangled state into another via
local operations. We formalize this as the Uhlmann Transformation Problem, an algorithmic
version of Uhlmann’s theorem. Then, we prove structural results relating the complexity of the
Uhlmann Transformation Problem, polynomial space quantum computation, and zero knowledge
protocols.

The Uhlmann Transformation Problem allows us to characterize the complexity of a variety
of tasks in quantum information processing, including decoding noisy quantum channels, break-
ing falsifiable quantum cryptographic assumptions, implementing optimal prover strategies in
quantum interactive proofs, and decoding the Hawking radiation of black holes. Our framework
for unitary complexity thus provides new avenues for studying the computational complexity of
many natural quantum information processing tasks.
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1 Introduction

Uhlmann’s theorem [Uhl76] is a fundamental result in quantum information theory that quantifies
how well a bipartite pure state |𝐶⟩ can be mapped to another bipartite pure state |𝐷⟩ by only
acting on a subsystem: letting 𝜌 and 𝜎 denote the reduced density matrices on the first subsystem
of |𝐶⟩ and |𝐷⟩, respectively, Uhlmann’s theorem states that

F(𝜌, 𝜎) = max
𝑈
| ⟨𝐷| id⊗ 𝑈 |𝐶⟩ |2 , (1.1)

where F(𝜌, 𝜎) denotes the fidelity function and the maximization is over all unitary transformations
acting on the second subsystem. We call a unitary 𝑈 achieving equality in Equation (1.1) an
Uhlmann transformation.1

Transforming entangled states via local operations is a ubiquitous task in quantum information
processing. Some examples include:
Quantum Shannon theory. Quantum Shannon theory is the study of the fundamental limits

of quantum communication over noisy and noiseless channels. Protocols for a myriad of
tasks such as state redistribution, entanglement distillation, and quantum communication
over a noisy quantum channel all require performing Uhlmann transformations [HHWY08,
ADHW09, BCR11, AJW18].

Quantum cryptography. While it is known that quantum commitment schemes with
information-theoretic security are impossible [May97, LC98], they are possible under com-
putational assumptions. Recent oracle separations suggest that their security can be based
on weaker assumptions than what is needed classically and that the existence of inherently
quantum cryptographic primitives may be independent from assumptions in traditional com-
plexity [Kre21, AQY22, MY22b, KQST23, LMW23]. It can be seen from the impossibility
results of Mayers–Lo–Chau [May97, LC98] that the security of a quantum commitment scheme
relies on the hardness of performing certain Uhlmann transformations.

Quantum gravity. Attempts to unite quantum mechanics with general relativity have given rise
to apparent paradoxes of whether black holes preserve information or not [Haw76]. Recently,
physicists have provided intriguing arguments based on computational complexity as possible
resolutions to these paradoxes [HH13]. These arguments claim that distilling entanglement
from the emitted Hawking radiation of a black hole is computationally infeasible — this can be
equivalently phrased as a statement about the hardness of an Uhlmann transformation [HH13,
Bra23].

Quantum complexity theory. The 𝖰𝖨𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤 theorem [JJUW11] gives a characterization
of the power of (single-prover) quantum interactive proofs. Kitaev and Watrous [KW00]
showed that optimal prover strategies in these interactive proofs boil down to applying
Uhlmann transformations at each round.

These examples motivate investigating a computational task we call the Uhlmann Transforma-
tion Problem (denoted by the shorthand Uhlmann): given the classical description of quantum
circuits 𝐶,𝐷 acting on 2𝑛 qubits and an 𝑛-qubit quantum system (in some unknown state), apply
the Uhlmann transformation 𝑈 for the state pair (|𝐶⟩ , |𝐷⟩) to the given quantum system, where
|𝐶⟩ = 𝐶 |02𝑛⟩ and |𝐷⟩ = 𝐷 |02𝑛⟩.

1Such Uhlmann transformations are unique only if |𝐶⟩ , |𝐷⟩ have full Schmidt rank.
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What is the complexity of Uhlmann? What are the implications for the complexity of the tasks
mentioned in the examples above? For instance, many protocols developed in quantum Shannon
theory achieve asymptotically optimal communication rates, but are not known to be computation-
ally efficient due to the use of Uhlmann transformations for decoding. Could solving Uhlmann
be necessary for these protocols? What would that mean for quantum cryptography or quantum
gravity? Despite the prevalence of Uhlmann transformations in quantum information processing,
these questions have not been studied systematically.

The goal of this paper is to study these questions formally. Since Uhlmann transformations
are inherently quantum operations and cannot meaningfully be phrased as decision or function
problems, we need to extend the language of complexity theory to unitary synthesis problems,
i.e. computational problems that involve implementing a unitary operation on a quantum system
in an unknown state. The first main contribution of this paper is to provide a general formal
framework for reasoning about unitary complexity (Part I). This involves extending many of the
traditional notions of complexity theory, such as reductions, complexity classes, complete problems,
etc. to the setting of unitary synthesis problems. Our second main contribution is to analyze
the complexity of the Uhlmann Transformation Problem within this framework (Part II). This
in turn allows us to show relationships between unitary complexity classes such as showing that
(average case versions of) the classes 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 and 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 are equal. Finally, we show
how the Uhlmann transformation problem plays a central role in connecting the complexity of many
natural tasks in quantum information processing (Part III). For example, we establish reductions and
equivalences between Uhlmann transformation problem and the security of quantum commitment
schemes, falsifiable quantum cryptographic assumptions, unclonable state generators, quantum state
compression, decoding of noisy quantum channels, and more.

1.1 A fully quantum complexity theory

The complexity of Uhlmann transformations deals with the hardness of implementing a unitary
transformation, where the inputs and outputs of the task are quantum states. Traditional com-
plexity classes deal with tasks with classical inputs and outputs (e.g., solving a decision problem
or computing a Boolean function) — which appears inadequate for capturing the complexity of
Uhlmann transformations, or more generally of implementing unitaries on unknown input states.
To study the hardness of problems with quantum inputs or outputs, we need a new framework.

The idea that the complexity of inherently quantum problems cannot easily be reduced to the
complexity of classical problems has already been explored in prior works [KA04, Aar16, ACQ22].
Indeed, the oracle separations mentioned above [Kre21, KQST23, LMW23] demonstrate that the
complexity of breaking certain quantum cryptographic primitives is independent of the complexity
of the decisional complexity classes 𝖭𝖯 or 𝖰𝖬𝖠; in other words, even if 𝖯 = 𝖭𝖯, certain quantum
cryptographic primitives could still remain secure. In fact, [LMW23] gives evidence that the ability
to solve any decision problem (even undecidable ones!) would not help with breaking quantum
cryptography.

Recently, Rosenthal and Yuen initiated the study of complexity classes for state synthesis and
unitary synthesis problems [RY22]. A state synthesis problem is a sequence (𝜌𝑥)𝑥∈{0,1}* of quantum
states. A state complexity class is a collection of state synthesis problems that captures the compu-
tational resources needed to synthesize (i.e., generate) the states. For example, [RY22] defined the
class 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 as the set of all state sequences (𝜌𝑥)𝑥∈{0,1}* for which there is a polynomial-space
(but possibly exponential-time) quantum algorithm 𝐴 that, on input 𝑥, outputs an approximation
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to the state 𝜌𝑥.
Unitary complexity classes, which are the focus of this work, describe the computational resources

needed to perform state transformations. A unitary synthesis problem is a sequence of unitary2

operators (𝑈𝑥)𝑥∈{0,1}* and a unitary complexity class is a collection of unitary synthesis problems.
For example the class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 is the set of all sequences of unitary operators (𝑈𝑥)𝑥∈{0,1}* where
there is a polynomial-time quantum algorithm 𝐴 that, given an instance 𝑥 ∈ {0, 1}* and a quantum
system 𝖡 as input, (approximately) applies 𝑈𝑥 to system 𝖡. As a simple example, any sequence
of unitaries (𝑈𝑥) where 𝑥 is simply (an explicit encoding of) a sequence of quantum gates that
implement the unitary is obviously in 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯, since given 𝑥, the algorithm 𝐴 can just execute
the circuit specified by 𝑥 in time polynomial in the length of 𝑥. On the other hand, 𝑥 could also
specify a unitary in a sequence in a more implicit way (e.g. by circuits for two quantum states
between which 𝑈𝑥 is meant to be the Uhlmann transformation), in which case the sequence (𝑈𝑥)𝑥
could be harder to implement.

The reason we say that the algorithm 𝐴 is given a system instead of a state is to emphasize that
the state of the system is not known to the algorithm ahead of time, and in fact the system may
be part of a larger entangled state. Thus the algorithm has to coherently apply the transformation
𝑈𝑥 to the given system, maintaining any entanglement with an external system. This makes uni-
tary synthesis problems fundamentally different, and in many cases harder to analyse, than state
synthesis problems.

Traditional complexity classes like 𝖯, 𝖭𝖯, and 𝖡𝖰𝖯 have proven to be powerful ways of organizing
and comparing the difficulty of different decision problems. In a similar way, state and unitary
complexity classes are useful for studying the complexity of quantum states and of quantum state
transformations. We can then ask about the existence of complete problems, reductions, inclusions,
separations, closure properties, and more. Importantly, state and unitary complexity classes provide
a useful language to formulate questions and conjectures about the computational hardness of
inherently quantum problems. For example, we can ask whether 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 is contained in
𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝖯𝖲𝖯𝖠𝖢𝖤 — in other words, can polynomial-space-computable unitary transformations be
also computed by a polynomial-time quantum computer that is given oracle access to a 𝖯𝖲𝖯𝖠𝖢𝖤
decision oracle?3

Unitary synthesis problems, classes, and reductions. We begin by giving general definitions
for unitary synthesis problems and a number of useful unitary complexity classes, e.g. 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯
and 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤. We then define a notion of reductions between unitary synthesis problems.
Roughly speaking, we say that a unitary synthesis problem U = (𝑈𝑥)𝑥 polynomial-time reduces
to V = (𝑉𝑥)𝑥 if an efficient algorithm for implementing V implies an efficient algorithm for imple-
menting U .

Next, we define distributional unitary complexity classes that capture the average case complexity
of solving a unitary synthesis problem. Here, the unitary only needs to be implemented on an input
state randomly chosen from some distribution 𝒟 which is known ahead of time. This is the natural
generalisation of traditional average-case complexity statements to the unitary setting. This notion

2In our formal definition of unitary synthesis problems (see Section 3), the 𝑈𝑥’s are technically partial isometries,
which is a promise version of unitaries, but we gloss over the distinction for now.

3We remark that this question is open — this is related to the “Unitary Synthesis Problem” raised by Aaronson
and Kuperberg [AK07]. Recent work [LMW23] gives evidence that the Unitary Synthesis Problem has a negative
answer: they show that the complexity of unitary transformations cannot be generically reduced to making a single
query to an arbitrary Boolean function.
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turns out to be particularly natural in the context of entanglement transformation problems because
it is equivalent to implementing the unitary on one half of a fixed larger entangled state |𝜓⟩.

The notion of average case complexity turns out to be central to our paper: nearly all of our
results are about average-case unitary complexity classes and the average-case complexity of the
Uhlmann Transformation Problem. Thus the unitary complexity classes we mainly deal with will
be 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 and 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, which informally mean sequences of unitaries that can
be implemented by time-efficient and space-efficient quantum algorithms, respectively, and where
the implementation error is measured with respect to inputs drawn from a fixed distribution over
quantum states; see Section 3 for details.

Interactive proofs for unitary synthesis. We then explore models of interactive proofs for
unitary synthesis problems. Roughly speaking, in an interactive proof for a unitary synthesis prob-
lem U = (𝑈𝑥)𝑥, a polynomial-time verifier receives an instance 𝑥 and a quantum system 𝖡 as
input, and interacts with an all-powerful but untrusted prover to try to apply 𝑈𝑥 to system 𝖡. As
usual in interactive proofs, the main challenge is that the verifier does not trust the prover, so the
protocol has to test whether the prover actually behaves as intended. We formalize this with the
complexity classes 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 and 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯, which capture unitary synthesis problem that can
be verifiably implemented in this interactive model. This generalizes the interactive state synthesis
model studied by [RY22, MY23].4 The primary difference between the state synthesis and unitary
synthesis models is that in the former, the verifier starts with a fixed input state (say, the all zeroes
state), while in the latter the verifier receives a quantum system 𝖡 in an unknown state that has to
be transformed by 𝑈𝑥. See Section 4 for more details.

Zero-knowledge unitary synthesis. In the context of interactive protocols, we also introduce a
notion of zero-knowledge protocols for unitary synthesis problems. Roughly speaking, a protocol is
zero-knowledge if the interaction between the verifier and prover can be efficiently reproduced by an
algorithm (called the simulator) that does not interact with the prover at all. This way, the verifier
can be thought of as having learned no additional knowledge from the interaction aside from the fact
that the task was solved. This model gives rise to the unitary complexity class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV,5

which is a unitary synthesis analogue of the decision class 𝖰𝖲𝖹𝖪HV in traditional complexity theory.
Interestingly, for reasons that we explain in more detail in Section 4.3, the average-case aspect of
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV appears to be necessary to obtain a nontrivial definition of zero-knowledge in the
unitary synthesis setting.

Just like there is a zoo of traditional complexity classes [Aar23], we expect that many unitary
complexity classes can also be meaningfully defined and explored. In this paper we focus on the
ones that turn out to be tightly related to the Uhlmann Transformation Problem. We discuss these
relationships next.

Remark 1.1. For simplicity’s sake, in the introduction we present informal statements of our results
that gloss over some technical details that would otherwise complicate the result statement. For
example, we do not distinguish between unitary synthesis problems and distributional versions of
them, nor do we distinguish between uniform and non-uniform unitary complexity classes. After
each informal result statement we point the reader to where the formal result is stated and proved.

4The class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 was also briefly discussed informally by Rosenthal and Yuen [RY22].
5The “HV” modifier signifies that the zero-knowledge property is only required to hold with respect to verifiers

that honestly follow the protocol.
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1.2 Structural results about the Uhlmann Transformation Problem

Equipped with the proper language to talk about unitary synthesis problems, we now turn to the
Uhlmann Transformation Problem. We define the unitary synthesis problem Uhlmann to be the
sequence (𝑈𝑥)𝑥∈{0,1}* where we interpret an instance 𝑥 as an explicit encoding (as a list of gates) of
a pair of quantum circuits (𝐶,𝐷) such that 𝐶 and 𝐷, on the all-zeroes input, output pure bipartite
states |𝐶⟩ , |𝐷⟩ on the same number of qubits, and 𝑈𝑥 is an associated Uhlmann transformation
mapping |𝐶⟩ to |𝐷⟩ by acting on a local system. Usually, we will assume that 𝐶 and 𝐷 output 2𝑛
qubits (for some 𝑛 specified as part of 𝑥) and the Uhlmann transformation acts on the last 𝑛 qubits.
If 𝑥 does not specify such a pair, then an algorithm implementing the unitary synthesis problem is
allowed to behave arbitrarily on such 𝑥; this is formally captured by allowing partial isometries as
part of unitary synthesis problems in Definition 3.1.

Furthermore, for a parameter 0 ≤ 𝜅 ≤ 1 we define the problem Uhlmann𝜅, which is the same
as Uhlmann, except that it is restricted to instances corresponding to states |𝐶⟩ , |𝐷⟩ where the
fidelity between the reduced density matrices 𝜌, 𝜎 of |𝐶⟩ , |𝐷⟩ respectively on the first subsystem
is at least 𝜅; recall by Uhlmann’s theorem that 𝜅 lower bounds how much overlap |𝐶⟩ can achieve
with |𝐷⟩ by a local transformation. By definition, Uhlmann𝜅 instances are at least as hard as
Uhlmann𝜅′ instances when 𝜅 ≤ 𝜅′. We provide formal definitions of Uhlmann, Uhlmann𝜅, and
their distributional versions in Section 5.

Zero-knowledge and the Uhlmann Transformation Problem. We show that the Uhlmann
Transformation Problem (with fidelity parameter 𝜅 = 1 − 𝜖 for negligibly small 𝜖 as a function of
the length of the string specifying an instance 𝑥) exactly characterizes the complexity of the unitary
complexity class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV, which is the unitary synthesis version of 𝖰𝖲𝖹𝖪HV [Wat02].

Theorem 1.2 (Informal). Uhlmann1−𝜖 for negligibly small 𝜖 is complete for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV

under polynomial-time reductions.

This is formally stated and proved in Section 6.1. To show completeness we have to prove two
directions. The first direction is to show that if one can efficiently solve Uhlmann1−𝜖 in the average
case (meaning that one can approximately map the input state |𝐶⟩ to |𝐷⟩ by acting locally), then
one can efficiently solve any other distributional unitary synthesis problem in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV.
This uses a characterization of quantum interactive protocols due to Kitaev and Watrous [KW00].

The second direction is to show that Uhlmann1−𝜖 is in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV by exhibiting an
(honest-verifier) zero-knowledge protocol to solve the Uhlmann Transformation Problem. Our pro-
tocol is rather simple: in the average case setting, we assume that the verifier receives the last 𝑛
qubits of the state |𝐶⟩ = 𝐶 |02𝑛⟩, and the other half is inaccessible. Its goal is to transform, with
the help of a prover, the global state |𝐶⟩ to |𝐷⟩ by only acting on the last 𝑛 qubits that it received
as input. To this end, the verifier generates a “test” copy of |𝐶⟩ on its own, which it can do because
𝐶 is a polynomial-size circuit. The verifier then sends to the prover two registers of 𝑛 qubits; one of
them is the first half of the test copy and one of them (call it 𝖠) holds the “true” input state. The
two registers are randomly shuffled. The prover is supposed to apply the Uhlmann transformation
𝑈 to both registers and send them back. The verifier checks whether the “test” copy of |𝐶⟩ has been
transformed to |𝐷⟩ by applying the inverse circuit 𝐷† to the test copy and checking if all qubits are
zero. If so, it accepts and outputs the register 𝖠, otherwise the verifier rejects.

If the prover is behaving as intended, then both the test copy and the “true” copy of |𝐶⟩ are
transformed to |𝐷⟩. Furthermore, the prover cannot tell which of its two registers corresponds to
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the test copy, and thus if it wants to pass the verification with high probability, it has to apply
the correct Uhlmann transformation on both registers. This shows that the protocol satisfies the
completeness and soundness properties of an interactive proof. The zero-knowledge property is also
straightforward: if both the verifier and prover are acting according to the protocol, then before the
verifier’s first message to the prover, the reduced state of the verifier is |𝐶⟩⟨𝐶| ⊗ 𝜌 (where 𝜌 is the
reduced density matrix of |𝐶⟩), and at the end of the protocol, the verifier’s state is |𝐷⟩⟨𝐷|⊗𝑈𝜌𝑈 †.
Both states can be produced in polynomial time.

One may ask: if the simulator can efficiently compute the state 𝑈𝜌𝑈 † without the help of the
prover, does that mean the Uhlmann transformation 𝑈 can be implemented in polynomial time? The
answer is no, since the simulator only has to prepare the appropriate reduced state (i.e. essentially
solve a state synthesis task), which is easy since the starting and ending states of the protocol
are efficiently computable; in particular, 𝑈𝜌𝑈 † is (approximately) the reduced state of |𝐷⟩, which
is easy to prepare. In contrast, the verifier has to implement the Uhlmann transformation on a
specific set of qubits that are entangled with a specific external register, i.e. it has to perform a
state transformation task that preserves coherence with the purifying register. This again highlights
the distinction between state and unitary synthesis tasks.

Hardness amplification for Uhlmann. We then prove a hardness amplification result for the
Uhlmann Transformation Problem. The unitary complexity classes we define can be parameterized
by an error parameter 𝛿. For example, 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛿 denotes the set of unitary synthesis problems
where the transformation can be implemented up to error 𝛿 on all input states; when the error
parameter is not specified we assume that the transformation can be implemented with any error
that is an arbitrarily small inverse polynomial. It is clear that if U ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛿, then U ∈
𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝜂 for all 𝜂 ≥ 𝛿 (i.e., problems cannot get any harder if we are allowed to incur larger
error).

Although we do not expect Uhlmann to be solvable in polynomial time, we show that if
Uhlmann transformations can generally be efficiently implemented with large error (even with error
approaching 1), then they can be efficiently implemented with arbitrarily small inverse polynomial
error. We prove this by analysing parallel repetitions of instances of the Uhlmann transforma-
tion problem using ideas inspired by “quantum rewinding” techniques from quantum cryptogra-
phy [Wat06]. Written in terms of unitary classes, we have:

Theorem 1.3 (Informal). Let 𝜖 be negligibly small. Then Uhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 if and
only if Uhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯1−𝜉 where 𝜉(𝑛) = 𝑛−1/16. Here, 𝑛 refers to the number of
qubits of the Uhlmann instance.

This is formally stated and proved as Theorem 6.8. In other words, being able to solve
Uhlmann (with the guarantee that the fidelity between the reduced states is negligibly close to
1) with very large error is no easier (up to polynomial factors) than solving it with very small
error. We prove the more interesting direction (that Uhlmann ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯1−𝜉 implies that
Uhlmann ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯) as follows: given an instance (|𝐶⟩ , |𝐷⟩) of Uhlmann for which it
is hard to implement the corresponding Uhlmann transformation 𝑈 with error 𝛿, we show that it
is hard to to implement the Uhlmann transformation 𝑈⊗𝑘 for the 𝑘-fold repetition (|𝐶⟩⊗𝑘 , |𝐷⟩⊗𝑘)
even with error 1 − 1

𝛿𝑘2
. The proof uses ideas inspired by “quantum rewinding” techniques from

quantum cryptography [Wat06].
A natural question is whether one can prove a strong hardness amplification result, where one

shows that hardness of an Uhlmann transformation 𝑈 implies the hardness of implementing the
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repeated transformation 𝑈⊗𝑘 with error 1− exp(−Ω(𝑘)). Strong hardness amplification results are
known in classical complexity theory and cryptography [Raz98, Hai09, HPWP10]; we conjecture
that an analogous result holds for the Uhlmann Transformation Problem.

Conjecture 1.4. Let 𝜖 be negligibly small. Then Uhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 if and only if
Uhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯1−exp(−Ω(𝑛)).

Our hardness amplification result for the Uhlmann Transformation Problem immediately implies
hardness amplification for quantum commitments, which answers an open question of Yan [Yan22].
We give more details when discussing the applications to quantum cryptography later in this intro-
duction and in Section 8.

The succinct Uhlmann Transformation Problem. We also define a succinct version of the
Uhlmann Transformation Problem (denoted by SuccinctUhlmann), where the string 𝑥 encodes
a pair (𝐶, �̂�) of succinct descriptions of quantum circuits 𝐶,𝐷. By this we mean that 𝐶 (resp. �̂�)
is a classical circuit that, given a number 𝑖 ∈ ℕ written in binary, outputs the 𝑖’th gate in the
quantum circuit 𝐶 (resp. 𝐷). Thus the circuits 𝐶, 𝐷 in general can have exponential depth (in the
length of the instance string 𝑥) and generate states |𝐶⟩ , |𝐷⟩ that are unlikely to be synthesizable
in polynomial time. Thus the task of synthesizing the Uhlmann transformation 𝑈 that maps |𝐶⟩ to
a state with maximum overlap with |𝐷⟩, intuitively, should be much harder than the non-succinct
version. We confirm this intuition with the following result:

Theorem 1.5 (Informal). SuccinctUhlmann is complete for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 under
polynomial-time reductions.

This is formally stated and proved as Theorem 7.12. The class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 corre-
sponds to distributional unitary synthesis problems that can be solved using a polynomial-space
(but potentially exponential-depth) quantum algorithm. The fact that SuccinctUhlmann ∈
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 was already proved by Metger and Yuen [MY23], who used this to show that
optimal prover strategies for quantum interactive proofs can be implemented in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤.6

The fact that 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 reduces to SuccinctUhlmann is because solving a distributional
unitary synthesis problem (𝑈𝑥)𝑥 in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 is equivalent to applying a local unitary that
transforms an entangled state |𝜔𝑥⟩ representing the distribution to (id ⊗ 𝑈𝑥) |𝜔𝑥⟩. This is noth-
ing but an instance of the SuccinctUhlmann transformation problem. We refer to the proof of
Theorem 7.12 for details.

We then show another completeness result for SuccinctUhlmann:

Theorem 1.6 (Informal). SuccinctUhlmann is complete for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 under polynomial-
time reductions.

This is formally stated and proved as Theorem 7.6. Here, the class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 is like
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV except there is no requirement that the protocol between the honest veri-
fier and prover can be efficiently simulated. The proof of starts similarly to the proof of the
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV-completeness of Uhlmann, but requires additional ingredients, such as the
state synthesis protocol of [RY22] and the density matrix exponentiation algorithm of [LMR14].
Putting together Theorems 1.5 and 1.6 we get the following unitary complexity analogue of the
𝖰𝖨𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤 theorem [JJUW11] and the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 = 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 theorem [RY22, MY23]:

6This was phrased in a different way in their paper, as 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 was not yet defined.
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Corollary 1.7. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 = 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤.

This partially answers an open question of [RY22, MY23], who asked whether 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 =
𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 (although they did not formalize this question to the same level as we do here).
Using the Uhlmann Transformation Problem as a complete problem, we resolve this question in
the average case, and leave it as an interesting open question to prove the same statement for the
worst-case complexity classes 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 and 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯.

We can also relate the traditional decision complexity class 𝖯𝖲𝖯𝖠𝖢𝖤 to the unitary synthesis
problem SuccinctUhlmann with the following theorem.

Theorem 1.8. 𝖯𝖲𝖯𝖠𝖢𝖤 ⊆ 𝖡𝖰𝖯SuccinctUhlmann.

This is formally proved as Theorem 7.15. In other words, all languages in 𝖯𝖲𝖯𝖠𝖢𝖤 can be decided
by a quantum polynomial time algorithm that can query an oracle that solves SuccinctUhlmann.
Since it is believed that 𝖯𝖲𝖯𝖠𝖢𝖤 ̸⊆ 𝖡𝖰𝖯, this gives evidence from “traditional” complexity theory
that SuccinctUhlmann is a very difficult unitary synthesis problem. Our proof of this relies on
the random self-reducibility of 𝖯𝖲𝖯𝖠𝖢𝖤-complete languages [FF93].

We note that it is an interesting question whether the “converse” direction holds: can
SuccinctUhlmann be synthesized in polynomial time given oracle access to the decision class
𝖯𝖲𝖯𝖠𝖢𝖤? We conjecture that the answer is “no”, and that in general a given unitary complexity
class is much harder than its corresponding decision class.

1.3 Centrality of the Uhlmann Transformation Problem

We now relate the Uhlmann Transformation Problem to quantum information processing tasks
in a variety of areas: quantum cryptography, quantum Shannon theory, and high energy physics.
We show that the computational complexity of a number of these tasks is in fact equivalent to
the hardness of Uhlmann. For some other problems we show that they are efficiently reducible to
Uhlmann or SuccinctUhlmann. Although some of these connections have been already observed
in prior work, we believe that the framework of unitary complexity theory formalizes and clarifies
the relationships between these different problems.

1.3.1 Quantum cryptography applications

We begin by exploring connections between the Uhlmann Transformation Problem and several
concepts in quantum cryptography.

Quantum commitments. A bit commitment scheme is a fundamental cryptographic primitive
that allows two parties (called a sender and receiver) to engage in a two-phase communication
protocol: in the first phase (the “commit phase”), the sender sends a commitment (i.e. some string)
to a bit 𝑏 to the receiver; the hiding property of a bit commitment scheme ensures that the receiver
cannot decide the value of 𝑏 from this commitment string alone. In the second phase (the “reveal
phase”), the sender sends another string to the receiver that allows the receiver to compute the value
of 𝑏; the binding property of commitments ensures that the sender can only reveal the correct value
of 𝑏, i.e. if the sender sent a reveal string that was meant to convince the receiver it had committed
to a different value of 𝑏, the receiver would detect this.

Commitment schemes — even quantum ones — require efficiency constraints on the adversary
[May97, LC98]; at least one of the hiding or binding properties must be computational. In classical

11



cryptography, commitment schemes can be constructed from one-way functions [Nao03], but recent
works suggest the possibility of basing quantum commitment schemes on weaker, inherently quan-
tum assumptions such as the existence of pseudorandom states [Kre21, AQY22, MY22b, KQST23]
or EFI pairs [BCQ23].

In an in-depth study of the properties of quantum commitment schemes, Yan [Yan22] suggested
connecting the hardness of Uhlmann transformations to the existence of quantum commitments.
We formalize this connection within the unitary complexity framework and show the following:

Theorem 1.9 (Informal). If Uhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 for all negligible 𝜖, then quantum
commitments do not exist. On the other hand, if Uhlmann1−𝜖 ̸∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 for some negligible
𝜖, and furthermore hard instances of Uhlmann1−𝜖 can be uniformly and efficiently generated, then
quantum commitments with strong statistical hiding and weak computational binding exist.

Here, strong statistical hiding means that no adversary (even a computationally unbounded
one) can distinguish commitments to 𝑏 = 0 from commitments to 𝑏 = 1 with more than negligible
advantage, and weak computational binding means that no computationally bounded adversary can
swap the committed bit with fidelity greater than 1−1/𝑝(𝜆) for some polynomial 𝑝(𝜆) in the security
parameter. This theorem is formally stated and proved as Theorem 8.10.

We also show that the proof of hardness amplification for the Uhlmann Transformation Problem
(Theorem 1.3) can be used to amplify the security of the binding property of quantum commitments:
roughly speaking, if there is a commitment scheme where it is hard for a malicious sender to
transform the 0-commitment to have fidelity more than 1−1/𝑝(𝜆) with the 1-commitment for some
polynomial 𝑝(𝜆), then there exists another commitment scheme where it is hard for an adversary
to transform the 0-commitment to have more than 1

𝑞(𝜆) overlap with the 1-commitment for all
polynomials 𝑞(𝜆). This answers an open question of Yan [Yan22], who asked whether hardness
amplification for commitments is possible.

Theorem 1.10 (Informal). Quantum commitments with strong statistical hiding and weak compu-
tational binding exist if and only if quantum commitments with strong statistical hiding and 1/𝑞(𝜆)-
computational binding exist for all 𝑞(𝜆).

This theorem is formally stated and proved as Theorem 8.8. Furthermore, since we can gener-
ically perform flavor switching of quantum commitments (i.e. swap which security property holds
statistically and which computationally) [HMY23, GJMZ23, Yan22], both Theorems 1.9 and 1.10
can be extended to quantum commitments with computational hiding and statistical binding.

Assuming Conjecture 1.4 about strong amplification for the Uhlmann Transformation Problem,
we also obtain a stronger statement, which is that if Uhlmann1−𝜖 ̸∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 for some
negligibly small 𝜖 and hard instances can be uniformly and efficiently generated, then quantum
commitments with strong hiding and strong binding properties exist (whereas Theorem 1.9 only
guarantees commitments with weak binding). These strong commitments are in turn equivalent
to a number of quantum cryptographic primitives, such as EFI pairs [BCQ23], oblivious transfer
[BCQ23], (secretly-verifiable and statistically-invertible) one-way state generators [MY22a], and
secure quantum multi-party quantum computation scheme for any classical functionality [BCQ23,
AQY22].

Breaking unclonable state generators. We consider the cryptographic notion of unclonable
state generators, which is an efficiently computable map from a classical key 𝑘 to a quantum state
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|𝜑𝑘⟩ that is intractable to clone (without the classical key). This abstractly captures the secu-
rity of unclonable cryptographic primitives like quantum money [Wie83, AC12] or quantum copy-
protection [ALL+21, CLLZ21]. We show the following relation between unclonable state generators
and Uhlmann (stated formally as Theorem 8.18):

Theorem 1.11 (Informal). A real-valued, clean-output unclonable state generator is either
information-theoretically secure, or the task of cloning its output can be efficiently reduced to
Uhlmann𝜅 for 𝜅 = 1/poly(𝑛).

Being real-valued means that the output state of the one-way state generator is represented as
a real vector. The clean-output property means that the one-way state generator, on input key 𝑘,
only outputs |𝜑𝑘⟩ and no other residual state depending on 𝑘. We argue in Section 8.2 that most
existing constructions of unclonable state generators are real-valued and clean-output.

Note that this theorem uses a regime where 𝜅 ≪ 1. This marks our first application of
Uhlmann𝜅 for small 𝜅; most of the applications in this paper are connected to Uhlmann1−𝜖
for a negligible function 𝜖(𝑛). The class Uhlmann𝜅 for small 𝜅 is at least as hard as Uhlmann1−𝜖,
and a priori it could be harder.
Remark 1.12. Recent work of Khurana and Tomer [KT23] shows that breaking one-way state gener-
ators (OWSGs) with 𝑡(𝜆)-copy security can be efficiently reduced to Uhlmann1−negl, provided that
𝑡(𝜆) is a sufficiently large polynomial. One-way state generators and unclonable state generators
are closely related, but have different security properties. We elaborate on the comparison between
OWSGs and unclonable state generators in Section 8.2.

Breaking falsifiable quantum cryptographic assumptions. Finally, we consider the general
notion of a falsifiable quantum cryptographic assumption, which can be seen as a quantum ana-
logue of the notion of a falsifiable assumption considered by Naor [Nao03] as well as Gentry and
Wichs [GW11]. Our notion of a falsifiable quantum cryptographic assumption captures almost any
reasonable definition of security in quantum cryptography which can be phrased in terms of an
interactive security game between an adversary and a challenger. We show the following generic
upper bound on the complexity of breaking falsifiable quantum cryptographic assumptions (see
Theorem 8.21 for the formal statement):

Theorem 1.13 (Informal). A falsifiable quantum cryptographic assumption is either information-
theoretically secure, or the task of breaking security reduces to SuccinctUhlmann.

Since SuccinctUhlmann is complete for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 (Theorem 1.5), this means that
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 ̸= 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 is a necessary complexity-theoretic assumption for compu-
tational quantum cryptography. This suggests that unitary complexity provides the appropriate
framework to establish a close link between complexity theory and quantum cryptography, as recent
work [Kre21, AQY22, MY22b, KQST23, LMW23] has shown that traditional complexity theoretic
assumptions are not always linked to quantum cryptography in the way one would expect.

1.3.2 Quantum Shannon theory applications

Quantum Shannon theory studies the achievability and limits of quantum communication tasks
(see [Wil13, KW20, Ren22] for a comprehensive overview). While the information-theoretic aspects
of quantum communication tasks are well-understood, the complexity of implementing these proto-
cols has received remarkably little attention. Here, we study the computational complexity of some
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fundamental tasks in quantum Shannon theory, namely noisy channel decoding and compression
of quantum states using our framework for unitary complexity and our results on the Uhlmann
transformation problem. We also note that in independent work after the publication of our results,
Arnon-Friedman, Brakerski, and Vidick have investigated the computational aspects of entangle-
ment distillation [ABV23], showing that in general entanglement distillation is computationally
infeasible assuming quantum commitments exist. It would be interesting to connect their results
to our framework for unitary complexity to build up a more rigorous theory of the complexity of
quantum Shannon tasks.

Decodable channel problem. Consider a quantum channel 𝒩 that maps a register 𝖠 to a
register 𝖡. Suppose that the channel 𝒩 is decodable, meaning that it is possible to information-
theoretically (approximately) recover the information sent through the channel; i.e., there exists a
decoding channel 𝒟 mapping register 𝖡 back to register 𝖠 such that 𝒟𝖡→𝖠′

(︁
𝒩𝖠→𝖡(Φ𝖠𝖱)

)︁
≈ Φ𝖠′𝖱,

where |Φ⟩𝖠𝖱 is the maximally entangled state. Note that the register 𝖱 is not touched.
Important examples of decodable channels come from coding schemes for noisy quantum chan-

nels: suppose 𝒦 is a noisy quantum channel that has capacity 𝐶 (meaning it is possible to (asymp-
totically) transmit 𝐶 qubits through 𝒦). Let ℰ denote a channel that takes 𝐶 qubits and maps it to
an input to 𝒦. For example, we can think of ℰ as an encoder for a quantum error-correcting code.
If ℰ is a good encoding map, the composite channel 𝒩 : 𝜌 ↦→ 𝒦(ℰ(𝜌)) is decodable.

We define the Decodable Channel Problem: given as input a circuit description of a channel
𝒩 that maps register 𝖠 to register 𝖡 and furthermore is promised to be decodable, and given the
register 𝖡 of the state (𝒩 ⊗ id)(Φ𝖠𝖱), decode and output a register 𝖠′ ≡ 𝐴 such that the final joint
state of 𝖠′𝖱 is close to |Φ⟩. Although it is information-theoretically possible to decode the output of
𝒩 , it may be computationally intractable to do so. In fact, we can provide a precise characterisation
of the complexity of the Decodable Channel Problem:

Theorem 1.14 (Informal). The Decodable Channel Problem can be solved in polynomial-time if
and only if Uhlmann ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯.

This theorem is formally stated and proved as Theorem 9.6; since we do not expect that
Uhlmann ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯, this suggests that the Decodable Channel Problem is hard to solve in
general. The main idea behind the upper bound (Decodable Channel Problem is easy if Uhlmann
is easy) is that a channel 𝒩 is decodable if and only if the output of the complementary channel7 𝒩 𝑐,
when given register 𝖠 of the maximally entangled state |Φ⟩𝖠𝖱, is approximately unentangled with
register 𝖱. Thus by Uhlmann’s theorem there exists an Uhlmann transformation acting on the out-
put of the channel 𝒩 that recovers the maximally entangled state. If Uhlmann ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯,
then this transformation can be performed efficiently.

The proof of the lower bound (Decodable Channel Problem is hard if Uhlmann is hard) draws
inspiration from quantum commitments. As discussed earlier, the hardness of Uhlmann essentially
implies the existence of strong statistical hiding and weak computational binding quantum commit-
ments. From this, we can construct a hard instance of the Decodable Channel Problem: consider
a channel 𝒩 that takes as input a single bit |𝑏⟩, and then outputs the commitment register of the
commitment to bit 𝑏 (and discards the reveal register). The ability to decode this “commitment

7The output of the complementary channel can be thought of as the qubits that a purification (formally, a
Stinepring dilation) of the channel 𝒩 discards to the environment.
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channel” implies the ability to break the hiding property of the underlying commitment scheme,
and therefore decoding must be computationally hard.

Compression of quantum information. Another fundamental task in information theory —
both classical and quantum — is compression of data. Shannon’s source coding theorem shows that
the Shannon entropy of a random variable 𝑋 characterizes the rate at which many independent
copies of 𝑋 can be compressed [Sha48]. Similarly, Schumacher proved that the von Neumann
entropy of a density matrix 𝜌 characterizes the rate at which many independent copies of 𝜌 can be
(coherently) compressed [Sch95].

We consider the one-shot version of the information compression task, where one is given just
one copy of a density matrix 𝜌 (rather than many copies) and the goal is to compress it to as few
qubits as possible while being able to recover the original state within some error. In the one-shot
setting the von Neumann entropy no longer characterizes the optimal compression of 𝜌; instead this
is given by a one-shot entropic quantity known as the smoothed max-entropy [Tom13]. What is
the computational effort required to perform near-optimal one-shot compression of quantum states?
Our next result gives upper and lower bounds for the computational complexity of this task:

Theorem 1.15 (Informal). Quantum states can be optimally compressed to their smoothed max
entropy in polynomial-time if Uhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 for some negligible 𝜖. Furthermore,
if stretch pseudorandom state generators exist, then optimal compression of quantum states cannot
be done in polynomial time.

This theorem is formally stated and proved as Theorems 9.15 and 9.17. The upper bound
(i.e., compression is easy if Uhlmann is easy) is proved using a powerful technique in quantum
information theory known as decoupling [Dup10]. The hardness result for compression is proved
using a variant of pseudorandom states, a cryptographic primitive that is a quantum analogue of
pseudorandom generators [JLS18].

1.3.3 Theoretical physics applications

In recent years, quantum information and quantum complexity have provided a new lens on
long-standing questions surrounding the quantum-mechanical description of black holes. [Pre92,
AMPS13, HH13, BRS+16, Sus16, BFV20, YE23]. We consider applications of the Uhlmann Trans-
formation Problem to two computational tasks arising from this research.

First, we consider the Harlow-Hayden black hole radiation decoding task [HH13], which is defined
as follows. We are given as input a circuit description of a tripartite state |𝜓⟩𝖡𝖧𝖱 that represents
the global pure state of a single qubit (register 𝖡), the interior of a black hole (register 𝖧), and the
Hawking radiation that has been emitted by the black hole (register 𝖱). Moreover, we are promised
that it is possible to decode from the emitted radiation 𝖱 a single qubit 𝖠 that forms a maximally
entangled state |EPR⟩ = 1√

2
(|00⟩+ |11⟩) with register 𝖡. The task is to perform this decoding when

given register 𝖱 of a system in the state |𝜓⟩.
Harlow and Hayden [HH13] showed that the decoding task is computationally intractable as-

suming that 𝖲𝖹𝖪 ̸⊆ 𝖡𝖰𝖯. However, precisely characterizing the task’s complexity (i.e., providing
an equivalence rather than a one-way implication) appears to require the notions of a fully quantum
complexity theory. Brakerski recently showed that this task is equivalent to breaking the security of
a quantum cryptographic primitive known as EFI pairs [Bra23]. We reformulate this equivalence in
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our unitary complexity framework to show that black hole radiation decoding (as formalised above)
can be solved in polynomial-time if and only if Uhlmann ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯.

Secondly, we consider the complexity of detecting interference between orthogonal states (i.e. dis-
tinguish (|𝜓⟩+|𝜙⟩)/

√
2 from (|𝜓⟩−|𝜙⟩)/

√
2), which was recently studied in the context of physically

detecting interference between superpositions of spacetime geometries in the AdS/CFT correspon-
dencein [AAS20]. We show that a suitably formalised version of this task polynomial-time reduces
to SuccinctUhlmann.

1.4 Summary and future directions

Computational tasks with quantum inputs and/or outputs are ubiquitous throughout quantum
information processing. The traditional framework of complexity theory, which is focused on com-
putational tasks with classical inputs and outputs, cannot naturally capture the complexity of these
“fully quantum” tasks.

In this paper we introduce a framework to reason about the computational complexity of uni-
tary synthesis problems. We then use this framework to study Uhlmann’s theorem through an
algorithmic lens, i.e. to study the complexity of Uhlmann transformations. We prove that variants
of the Uhlmann Transformation Problem are complete for some unitary complexity classes, and
then explore relationships between the Uhlmann Transformation Problem and computational tasks
in quantum cryptography, quantum Shannon theory, and high energy physics.

The study of the complexity of state transformation tasks is a very new field and we hope that our
formal framework of unitary complexity theory and our findings about the Uhlmann Transformation
Problem lay the foundations for a rich theory of the complexity of “fully quantum” problems. A lot
of questions in this direction are completely unexplored. Throughout this paper, we have included
many concrete open problems, which we hope will spark future research in this new direction in
complexity theory. Additionally, our work suggests some high-level, open-ended future directions
to explore:

Populating the zoo. An important source of the richness of computational complexity theory is
the variety of computational problems that are studied. For example, the class 𝖭𝖯 is so interesting
because it contains many complete problems that are naturally studied across the sciences [Pap97],
and the theory of 𝖭𝖯-completeness gives a unified way to relate them to each other.

Similarly, a fully quantum complexity theory should have its own zoo of problems drawn from a
diverse range of areas. We have shown that core computational problems in quantum cryptography,
quantum Shannon theory, and high energy physics can be related to each other through the language
of unitary complexity theory. What are other natural problems in e.g. quantum error-correction,
quantum metrology, quantum chemistry, or condensed matter physics, and what can we say about
their computational complexity?

The crypto angle. Complexity and cryptography are intimately intertwined. Operational tasks
in cryptography have motivated models and concepts that have proved indispensible in complexity
theory (such as pseudorandomness and zero-knowledge proofs), and conversely complexity theory
has provided a rigorous theoretical foundation to study cryptographic hardness assumptions.

We believe that there can be a similarly symbiotic relationship between quantum cryptography
and a fully quantum complexity theory. Recent quantum cryptographic primitives such as quantum
pseudorandom states [JLS18] or one-way state generators [MY22b] are unique to the quantum
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setting, and the relationships between them are barely understood. For example, an outstanding
question is whether there is a meaningful minimal hardness assumption in quantum cryptography,
just like one-way functions are in classical cryptography. Can a fully quantum complexity theory
help answer this question about minimal quantum cryptographic assumptions, or at least provide
some guidance? For example, there are many beautiful connections between one-way functions,
average-case complexity, and Kolomogorov complexity [IL89, Imp95, LP20]. Do analogous results
hold in the fully quantum setting?

The learning theory angle. Quantum learning theory has also seen rapid development, partic-
ularly on the topic of quantum state learning [Aar07, HKP20, BO21, AA23]. Learning quantum
states or quantum processes can most naturally be formulated as tasks with quantum inputs. Tradi-
tionally these tasks have been studied in the information-theoretic setting, where sample complexity
is usually the main measure of interest. However we can also study the computational difficulty of
learning quantum objects. What does a complexity theory of quantum learning look like?

Traditional versus fully quantum complexity theory. While traditional complexity theory
appears to have difficulty reasoning about fully quantum tasks, can we obtain formal evidence
that the two theories are, in a sense, independent of each other? For example, can we show that
𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤 does not imply 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 = 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤? One would likely have to show this in
a relativized setting, i.e., exhibit an oracle 𝑂 relative to which 𝖯𝑂 = 𝖯𝖲𝖯𝖠𝖢𝖤𝑂 but 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝑂 ̸=
𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤𝑂. Another way would be to settle Aaronson and Kuperberg’s “Unitary Synthesis
Problem” [AK07] in the negative; see [LMW23] for progress on this. Such results would give
compelling evidence that the reasons for the hardness of unitary transformations are intrinsically
different than the reasons for the hardness of a Boolean function. More generally, what are other
ways of separating traditional from fully quantum complexity theory?

Guide for readers

Although the paper is rather long, the material is organized in a way that supports random-access
reading – depending on your interests, it is not necessary to read Section 𝑋 before reading Section
𝑋+1. All sections depend on the basic definitions of unitary complexity theory (Section 3) and the
basic definitions of the Uhlmann Transformation Problem (Section 5). From then on, it’s choose-
your-own-adventure. If you are interested in:

• Structural results about the complexity of Uhlmann. Read Sections 4, 6 and 7.

• Quantum cryptography. Read Section 8. It may be helpful to review the definitions of
quantum interactive protocols (Section 4) and the hardness amplification result (Section 6.2).

• Quantum Shannon theory. Read Section 9. It may be helpful to read the section on
quantum commitments (Section 8.1).

• Quantum gravity. Read Section 10. It may be helpful to read the section on the Decodable
Channel Problem (Section 9.1).
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2 Preliminaries

2.1 Notation

For a bit string 𝑥 ∈ {0, 1}*, we denote by |𝑥| its length (not its Hamming weight). When 𝑥 describes
an instance of a computational problem, we will often use 𝑛 = |𝑥| to denote its size.

A function 𝛿 : ℕ→ [0, 1] is an inverse polynomial if 𝛿(𝑛) ≤ 1/𝑝(𝑛) for all sufficiently large 𝑛. A
function 𝜖 : ℕ → [0, 1] is negligible if for every polynomial 𝑝(𝑛), for all sufficiently large 𝑛 we have
𝜖(𝑛) ≤ 1/𝑝(𝑛).

A register 𝖱 is a named finite-dimensional complex Hilbert space. If 𝖠,𝖡,𝖢 are registers, for
example, then the concatenation 𝖠𝖡𝖢 denotes the tensor product of the associated Hilbert spaces.
We abbreviate the tensor product state |0⟩⊗𝑛 as |0𝑛⟩. For a linear transformation 𝐿 and register 𝖱,
we write 𝐿𝖱 to indicate that 𝐿 acts on 𝖱, and similarly we write 𝜌𝖱 to indicate that a state 𝜌 is in
the register 𝖱. We write Tr(·) to denote trace, and Tr𝖱(·) to denote the partial trace over a register
𝖱.

We denote the set of linear transformations on 𝖱 by L(𝖱), and linear transformations from 𝖱
to another register 𝖲 by L(𝖱, 𝖲). We denote the set of positive semidefinite operators on a register
𝖱 by Pos(𝖱). The set of density matrices on 𝖱 is denotes S(𝖱). For a pure state |𝜙⟩, we write 𝜙
to denote the density matrix |𝜙⟩⟨𝜙|. We denote the identity transformation by id. For an operator
𝑋 ∈ L(𝑅), we define ‖𝑋‖∞ to be its operator norm, and ‖𝑋‖1 = Tr(|𝑋|) to denote its trace norm,
where |𝑋| =

√
𝑋†𝑋. We write td(𝜌, 𝜎) = 1

2‖𝜌 − 𝜎‖1 to denote the trace distance between two
density matrices 𝜌, 𝜎, and F(𝜌, 𝜎) = ‖√𝜌

√
𝜎‖21 for the fidelity between 𝜌, 𝜎.8 Throughout the paper

we frequently invoke the following relationship between fidelity and trace distance:

Proposition 2.1 (Fuchs-van de Graaf inequalities). For all density matrices 𝜌, 𝜎 acting on the
same space, we have that

1−
√︀

F(𝜌, 𝜎) ≤ td(𝜌, 𝜎) ≤
√︀
1− F(𝜌, 𝜎) .

A quantum channel from register 𝖠 to 𝖡 is a completely positive trace-preserving (CPTP) map
from L(𝖠) to L(𝖡). For simplicity, we often write 𝒩 : 𝖠 → 𝖡 instead of 𝒩 : L(𝖠) → L(𝖡) when it
is clear that 𝒩 is a channel. We denote the set of quantum channels as CPTP(𝖠,𝖡). We also call a
channel a superoperator. For a channel Φ, we write supp(Φ) to denote the number of qubits it takes as
input. We call a channel unitary (isometric) if it conjugates its input state with a unitary (isometry).

8We note that in the literature there are two versions of fidelity that are commonly used; here we use the squared
version of it.
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The diamond norm of a channel Φ ∈ CPTP(𝖠,𝖡) is defined as ‖Φ‖◇ = max𝜌 ‖(Φ⊗ id𝖢)(𝜌)‖1 where
the maximization is over all density matrices 𝜌 ∈ S(𝖠⊗ 𝖢) where 𝖢 is an arbitrary register.

Another important type of quantum operation that can be performed on a quantum state is a
measurement. In general a quantum measurement is described by a finite set of positive semidefinite
matrices ℳ = {𝑀𝑖}𝑖 satisfying

∑︀
𝑖𝑀𝑖 = id. Performing a measurement on a state 𝜌 results in an

output 𝑖, where each 𝑖 occurs with probability Tr[𝑀𝑖𝜌], and conditioned on the outcome being 𝑖,
the resulting state is

𝜌|𝑀𝑖 =

√
𝑀𝑖𝜌
√
𝑀𝑖

Tr(𝑀𝑖𝜌)
. (2.1)

The gentle measurement lemma is an important property about quantum measurements that con-
nects the trace distance between a state and its post-measurement state to the probability that the
measurement accepts.

Proposition 2.2 (Gentle Measurement lemma). Let 𝜌 be a density matrix and Λ be a positive
semidefinite hermitian matrix. If Tr[Λ𝜌] ≥ 1− 𝜖, then F(𝜌, 𝜌|Λ) ≥ 1− 𝜖 and ‖𝜌− 𝜌|Λ‖1 ≤ 2

√
𝜖.

A proof of this can be found in, e.g., [Wil13, Lemma 9.4.1].

2.2 Partial isometries and channel completions

Usually, operations on a quantum state can be described by a unitary matrix, an isometry (if new
qubits are introduced), or more generally a quantum channel (if one allows incoherent operations
such as measuring or discarding qubits). However, we will find it useful to consider operations whose
action is only defined on a certain subspace; outside of this “allowed subspace” of input states, we do
not want to make a statement about how the operation changes a quantum state. Such operations
can be described by partial isometries.

Definition 2.3 (Partial isometry). A linear map 𝑈 ∈ L(𝖠,𝖡) is called a partial isometry if there
exists a projector Π ∈ L(𝐴) and an isometry �̃� ∈ L(𝐴,𝐵) such that 𝑈 = �̃�Π. We call the image of
the projector Π the support of the partial isometry 𝑈 .

Of course in practice we cannot implement a partial isometry because it is not a trace-preserving
operation: states in the orthogonal complement of the support are mapped to the 0-vector. We
therefore define a channel completion of a partial isometry as any quantum channel that behaves
like the partial isometry on its support, and can behave arbitrarily on the orthogonal complement
of the support.

Definition 2.4 (Channel completion). Let 𝑈 ∈ L(𝖠,𝖡) be a partial isometry. A channel completion
of 𝑈 is a quantum channel Φ ∈ CPTP(𝖠,𝖡) such that for any input state 𝜌 ∈ S(𝖠),

Φ(Π𝜌Π) = 𝑈Π𝜌Π𝑈 † ,

where Π ∈ L(𝖠) is the projector onto the support of 𝑈 . If Φ is a unitary or isometric channel, we
also call this a unitary or isometric completion of the partial isometry.
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2.3 Quantum circuits

For convenience we assume that all quantum circuits use gates from the universal gate set
{𝐻,𝐶𝑁𝑂𝑇 , 𝑇} [NC10, Chapter 4] (although our results hold for any universal gate set consist-
ing of gates with algebraic entries). A unitary quantum circuit is one that consists only of gates
from this gate set. A general quantum circuit is a quantum circuit that can additionally have non-
unitary gates that (a) introduce new qubits initialized in the zero state, (b) trace them out, or (c)
measure them in the standard basis. We say that a general quantum circuit uses space 𝑠 if the total
number of qubits involved at any time step of the computation is at most 𝑠. The description of a
general quantum circuit is a sequence of gates (unitary or non-unitary) along with a specification
of which qubits they act on. A general quantum circuit 𝐶 implements a quantum channel; we will
abuse notation slightly and also use 𝐶 to denote the channel. For a unitary quantum circuit 𝐶 we
will write |𝐶⟩ to denote the state 𝐶 |0 . . . 0⟩.

Definition 2.5 (Polynomial size and space circuit families). We say that (𝐶𝑥)𝑥∈{0,1}* is a family
of polynomial-size general quantum circuits if there exists a polynomial 𝑝 such that 𝐶𝑥 has size
(i.e. number of gates) at most 𝑝(|𝑥|). We say that (𝐶𝑥)𝑥∈{0,1}* is a family of polynomial-space
general quantum circuits if there exists a polynomial 𝑝 such that 𝐶𝑥 uses at most 𝑝(|𝑥|) space.

Definition 2.6 (Uniform circuit families). A family of general quantum circuits (𝐶𝑥)𝑥∈{0,1}* is
called time-uniform (or simply uniform) if (𝐶𝑥)𝑥∈{0,1}* is polynomial-size and there exists a classical
polynomial-time Turing machine that on input 𝑥 outputs the description of 𝐶𝑥. Similarly, a family
of general quantum circuits (𝐶𝑥)𝑥∈{0,1}* is called space-uniform if (𝐶𝑥)𝑥∈{0,1}* is polynomial-space
and there exists a classical polynomial-space Turing machine that on input (𝑥, 𝑖) outputs the 𝑖’th gate
of 𝐶𝑥. For brevity, we also call a time-uniform (resp. space-uniform) family of quantum circuits a
polynomial time (resp. polynomial space) quantum algorithm.

Definition 2.7 (Unitary purification of a general quantum circuit). A unitary purification (or di-
lation) of a general quantum circuit 𝐶 is a unitary circuit 𝐶 formed by performing all measurements
in 𝐶 coherently (with the help of additional ancillas) and not tracing out any qubits.

The following proposition relates a general quantum circuit to its unitary purification; it follows
directly from the definition of the unitary purification. This proposition also demonstrates that
the unitary purification 𝐶 of a general quantum circuit 𝐶 is a specific Stinespring dilation of the
quantum channel corresponding to 𝐶.

Proposition 2.8. Let 𝐶 be a size-𝑚 general quantum circuit acting on 𝑛 qubits, and let 𝐶 be its
unitary purification where register 𝖱 denote all the qubits that are traced out in the original circuit
𝐶 as well as the ancilla qubits introduced for the purification. Then for all states 𝜌,

𝐶(𝜌) = Tr𝖱(𝐶 𝜌𝐶
†) .

Furthermore, 𝐶 acts on at most 𝑛+𝑚 qubits and has size at most 𝑚.

2.4 Quantum state complexity classes

Here we present the definitions of some state complexity classes that were introduced in [RY22].
Intuitively, they are classes of sequences of quantum states that require certain resources to be
synthesized (e.g., polynomial time or space).

20



Definition 2.9 (𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯, 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤). Let 𝛿 : ℕ → [0, 1] be a function. Then 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯𝛿
(resp. 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤𝛿) is the class of all sequences of density matrices (𝜌𝑥)𝑥∈{0,1}* such that each
𝜌𝑥 is a state on poly(|𝑥|) qubits, and there exists a time-uniform (resp. space-uniform) family of
general quantum circuits (𝐶𝑥)𝑥∈{0,1}* such that for all 𝑥 ∈ {0, 1}* with sufficiently large length |𝑥|,
the circuit 𝐶𝑥 takes no inputs and 𝐶𝑥 outputs a density matrix 𝜎𝑥 such that

td(𝜎𝑥, 𝜌𝑥) ≤ 𝛿(|𝑥|) .

We define

𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯 =
⋂︁
𝑞

𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯1/𝑞(𝑛) and 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 =
⋂︁
𝑞

𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤1/𝑞(𝑛)

where the intersection is over all polynomials 𝑞 : ℕ→ ℝ.
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Part I

Unitary Complexity Theory

3 Unitary Synthesis Problems and Unitary Complexity Classes

To be able to make formal statements about the complexity of quantum tasks, we present a frame-
work for unitary complexity theory: we define unitary synthesis problems, algorithms for imple-
menting them, unitary complexity classes, and reductions between unitary synthesis problems.

3.1 Unitary synthesis problems

In traditional complexity theory, decision problems are formalized as languages, which are sets of
binary strings. The analogue in our framework is the following formalization of unitary synthesis
problems.

Definition 3.1 (Unitary synthesis problem). A unitary synthesis problem is a sequence U =
(𝑈𝑥)𝑥∈{0,1}* of partial isometries.9

One should think of 𝑥 ∈ {0, 1}* as an encoding of the particular partial isometry in the sequence
U . The precise form of this encoding can differ between unitary synthesis problems. Some examples
of encodings include: 𝑥 describes a polynomial-length sequence of quantum gates; or 𝑥 describes a
classical circuit that, on input 𝑖, outputs the 𝑖-th gate of a (potentially exponentially long) quantum
circuit implementing a unitary. We call the latter a succinct description of the unitary.

We note that Definition 3.1 considers partial isometries, not only unitaries (which are of course
the special case of partial isometries for which the projector in Definition 2.3 is Π𝑥 = id). A partial
isometry is only required to be unitary on some subspace, and does not specify any action on the
orthogonal complement of the subspace. This is analogous to the idea of a “promise” on the inputs
in standard complexity theory: the unitary synthesis problem includes a “promised subspace” on
which all input states to that unitary are supposed to lie; if an input state has support on the
orthogonal complement to this subspace, the behaviour is not specified by the unitary synthesis
problem.

Examples. We present some examples of unitary synthesis problems.

1. (Hamiltonian time evolution) Consider some natural string encoding of pairs (𝐻, 𝑡) where 𝐻
is a local Hamiltonian and 𝑡 is a real number: the encoding will specify the number of qubits
that 𝐻 acts on as well as each local term of 𝐻. If 𝑥 is a valid encoding of such a pair (𝐻, 𝑡),
then define 𝑈𝑥 = 𝑒−𝑖𝐻𝑡. Otherwise, define 𝑈𝑥 = 0. Then we define TimeEvolution =
(𝑈𝑥)𝑥∈{0,1}* .

2. (Decision languages) Let 𝐿 ⊆ {0, 1}* be a decision language. Define UnitaryDecider𝐿 =
(𝑈𝑥)𝑥∈{0,1}* as follows: interpreting 𝑥 as the binary representation of an integer 𝑛 ∈ ℕ, the
unitary 𝑈𝑛 acts on 𝑛 + 1 qubits and for all 𝑦 ∈ {0, 1}𝑛, 𝑏 ∈ {0, 1}, we define 𝑈𝑛 |𝑦⟩ |𝑏⟩ =
|𝑦⟩ |𝑏⊕ 𝐿(𝑦)⟩ where 𝐿(𝑦) = 1 iff 𝑦 ∈ 𝐿. In other words, the unitary 𝑈𝑛 coherently decides
whether 𝑦 ∈ 𝐿 or not.

9We note that while unitary synthesis problems are not necessarily sequences of unitaries, we believe that it is a
better name than “partial isometry synthesis problem”.
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3. (State preparation) Let (|𝜓𝑥⟩)𝑥∈{0,1}* be a family of states where |𝜓𝑥⟩ is on 𝑛𝑥 qubits. Then
the partial isometries 𝑈𝑥 = |𝜓𝑥⟩⟨0𝑛𝑥 | form a unitary synthesis problem. In other words, these
partial isometries map the zero state to |𝜓𝑥⟩.

We now define what it means to implement a unitary synthesis problem. Intuitively, an imple-
mentation of a unitary synthesis problem is just a sequence of (not necessarily unitary) quantum
circuits that implement the corresponding partial isometries. The only subtlety is that a quantum
circuit is trace-preserving on all inputs, so it cannot map states in the orthogonal complement of the
support of the partial isometry to 0. Therefore, we require that the quantum circuit implements any
channel completion of the partial isometry (Definition 2.4). This is analogous to classical promise
problems, where a Turing machine deciding the promise problem is allowed to behave arbitrarily on
inputs violating the promise, instead of being e.g. required to abort.

Definition 3.2 (Worst-case implementation of unitary synthesis problems). Let U = (𝑈𝑥)𝑥∈{0,1}*
denote a unitary synthesis problem and 𝛿 : ℕ → ℝ a function. Let 𝐶 = (𝐶𝑥)𝑥∈{0,1}* denote a (not
necessarily uniform) family of quantum circuits, where 𝐶𝑥 implements a channel whose input and
output registers are the same as those of 𝑈𝑥. We say that 𝐶 implements U with worst-case error
𝛿 if for all 𝑥 ∈ {0, 1}*, there exists a channel completion Φ𝑥 of 𝑈𝑥 such that⃦⃦⃦

𝐶𝑥 − Φ𝑥

⃦⃦⃦
◇
≤ 𝛿(|𝑥|) ,

where ‖ · ‖◇ denotes the diamond norm.

Recall that a small diamond distance between two channels means that the channels are difficult
to distinguish even if the channels are applied to an entangled state.
Remark 3.3. For a unitary synthesis problem U = (𝑈𝑥)𝑥∈{0,1}* we call 𝑥 an instance, and 𝑈𝑥 the
transformation of U corresponding to instance 𝑥. We call the register that 𝑈𝑥 or its implementation
𝐶𝑥 acts on the quantum input to the unitary synthesis problem.

We also define a notion of distributional (or average-case) unitary synthesis problems. Here, in
addition to a partial isometry, we also specify a state and a register of this state on which the partial
isometry is going to act; note, however, that this is very different from a state synthesis problem,
as we discuss in Remark 3.12. We first give the formal definition and then explain why this is a
reasonable notion of a distributional unitary synthesis problem.

Definition 3.4 (Distributional unitary synthesis problem). We say that a pair (U ,Ψ) is a distri-
butional unitary synthesis problem if U = (𝑈𝑥)𝑥 is a unitary synthesis problem with 𝑈𝑥 ∈ L(𝖠𝑥,𝖡𝑥)
for some registers 𝖠𝑥,𝖡𝑥, and Ψ = (|𝜓𝑥⟩)𝑥 is a family of bipartite pure states on registers 𝖠𝑥𝖱𝑥.
We call |𝜓𝑥⟩ the distribution state with target register 𝖠𝑥 and ancilla register 𝖱𝑥.

Definition 3.5 (Average-case implementation of distributional unitary synthesis problems). Let
(U ,Ψ) denote a distributional unitary synthesis problem, where U = (𝑈𝑥)𝑥 and Ψ = (|𝜓𝑥⟩)𝑥,
and let 𝛿 : ℕ → ℝ be a function. Let 𝐶 = (𝐶𝑥)𝑥 denote a family of quantum circuits, where 𝐶𝑥
implements a channel whose input and output registers are the same as those of 𝑈𝑥. We say that
𝐶 implements (U ,Ψ) with average-case error 𝛿 if for all 𝑥 ∈ {0, 1}*, there exists a channel
completion Φ𝑥 of 𝑈𝑥 such that

td
(︁
(𝐶𝑥 ⊗ id)(𝜓𝑥), (Φ𝑥 ⊗ id)(𝜓𝑥)

)︁
≤ 𝛿(|𝑥|) ,

where the identity channel acts on the ancilla register of |𝜓𝑥⟩.
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The term “distributional” may seem a bit odd at first; for example, where is the distribution in
Definition 3.4? In classical average-case complexity theory, a distributional problem is one where
the inputs are sampled from some probability distribution 𝒟. The state family Ψ = (|𝜓𝑥⟩)𝑥 in a
distributional unitary synthesis problem (U ,Ψ) can be viewed as a purification of a distribution
over pure states: by the Schmidt decomposition, we can always write

|𝜓𝑥⟩ =
∑︁
𝑗

√
𝑝𝑥,𝑗 |𝜑𝑥,𝑗⟩ ⊗ |𝑗⟩ (3.1)

for orthonormal states {|𝜑𝑥,𝑗⟩}𝑗 on 𝖠𝑥 and {|𝑗⟩}𝑗 on 𝖱𝑥. The Schmidt coefficients {𝑝𝑥,𝑗}𝑗 form a
probability distribution 𝒟𝑥, so |𝜓𝑥⟩ can be viewed as the purification of the distribution 𝒟𝑥 over pure
states {|𝜑𝑥,𝑗⟩}𝑗 . The condition of 𝐶 implementing (U ,Ψ) with average-case error 𝛿 is equivalent to
the following: for all 𝑥 ∈ {0, 1}* there exists a channel completion Φ𝑥 of 𝑈𝑥 such that

𝔼
𝑗∼𝒟𝑥

td(𝐶𝑥(𝜑𝑥,𝑗), Φ𝑥(𝜑𝑥,𝑗)) ≤ 𝛿(|𝑥|) . (3.2)

Conversely, any distribution over pure states can be purified into a state of the form Equation (3.1),
so the condition in Equation (3.2) is equivalent to Definition 3.5. We will find it more convenient
to simply specify (for each 𝑥) one pure state |𝜓𝑥⟩𝖠𝑥𝖱𝑥 instead of a set of pure states on 𝖠𝑥 and a
distribution over them.

One might also wonder about specifying a distribution over the strings 𝑥 that label the partial
isometries 𝑈𝑥. However this can be “folded” into the state distribution by consider a larger unitary
𝑈𝑛 that takes as input |𝑥⟩ ⊗ |𝜓⟩.
Remark 3.6. Comparing Definition 3.2 and Definition 3.5, we see that we can also define the worst-
case error in terms of the average-case error: a circuit family 𝐶 = (𝐶𝑥)𝑥∈{0,1}* implements a
unitary synthesis problem U = (𝑈𝑥)𝑥∈{0,1}* with worst case error 𝛿 if and only if it implements the
distributional unitary synthesis problem (U ,Ψ) with average-case error 𝛿 for all state sequences
Ψ = (|𝜓𝑥⟩)𝑥.

3.2 Unitary complexity classes

A unitary complexity class is a collection of unitary synthesis problems. We introduce some natural
unitary complexity classes. First we define the unitary synthesis analogues of 𝖡𝖰𝖯 and 𝖯𝖲𝖯𝖠𝖢𝖤,
respectively.

Definition 3.7 (𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯, 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤). Let 𝛿 : ℕ → ℝ be a function. Define the unitary
complexity class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛿 (resp. 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤𝛿) to be the set of unitary synthesis problems U =
(𝑈𝑥)𝑥 for which there exists a uniform polynomial-time (resp. polynomial-space) quantum algorithm
𝐶 that implements U with worst-case error 𝛿. We define 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 (resp. 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤) to be
the intersection of 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯1/𝑞(𝑛) (resp. 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤1/𝑞(𝑛)) over all polynomials 𝑞(𝑛).

A natural question about unitary complexity classes such 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛿 and 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤𝛿 is
whether the error 𝛿 can be generically reduced, in analogy to how the completeness/soundness errors
can be generically reduced in randomized complexity classes like 𝖡𝖯𝖯 or 𝖡𝖰𝖯. In particular, is it
true that 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯1/3 is the same as 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝑛−1 or even 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯exp(−𝑛)? We first present
a simple argument for why error reduction for unitary synthesis classes is not possible in general.
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Proposition 3.8 (Impossibility of error reduction for unitary synthesis problems). Let 𝛼, 𝛽 be such
that 0 < 𝛼 < 𝛽 < 1 and 𝛽 > 2

√
3𝛼. Then 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛼 ̸= 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛽.

Proof. Define U = (𝑈𝑥)𝑥∈{0,1}* as follows. If 𝑥 is the description of a Turing machine that halts on

the empty input, then 𝑈𝑥 is the single-qubit unitary
(︂√

1− 3𝛼 −
√
3𝛼√

3𝛼
√
1− 3𝛼

)︂
. Otherwise, 𝑈𝑥 is the

identity matrix on a single qubit. It is clear that U ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛽 : this is because in the case that
𝑥 represents a halting Turing machine, the identity matrix approximates 𝑈𝑥 in diamond norm with
error 2

√
3𝛼 < 𝛽.

On the other hand, U /∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛼. Suppose for contradiction there was a uniform quantum
algorithm 𝐶 = (𝐶𝑥)𝑥 that implements U with worst-case error 𝛼. Then we can use 𝐶 to decide
the Halting Problem as follows. Given an input 𝑥, repeatedly run the circuit 𝐶𝑥 on |0⟩, and then
measure in the standard basis. Since 𝐶𝑥 implements 𝑈𝑥 with worst-case error 𝛼, this means that
if 𝑥 represents a halting Turing machine, then each trial results in |1⟩ with probability at least
3𝛼 − 𝛼 ≥ 2𝛼, and if 𝑥 represents a non-halting Turing machine, then each trial results in |1⟩ with
probability at most 𝛼. Since 𝛼 is constant, after a constant number of trials one can distinguish with
high confidence whether 𝑥 represents a halting Turing machine or not. Thus this implies the Halting
problem can be decided by a quantum algorithm in polynomial time, which is a contradiction.

Remark 3.9. It is interesting that a simple argument can prove separations between unitary complex-
ity classes, whereas in contrast it is much harder to prove analogous separations between traditional
complexity classes. For example, it remains unknown whether 𝖡𝖯𝖯 ̸= 𝖡𝖰𝖯. However we also
point out that this has nothing to do with the fact that we’re dealing with quantum complexity
classes; one could also prove similar separations between classical sampling complexity classes (see,
e.g., [Aar14]).

Next we define classes of distributional unitary synthesis problems, the unitary complexity ana-
logues of classical average case complexity classes.

Definition 3.10 (𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯, 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤). Let 𝛿 : ℕ→ ℝ be a function. Define the uni-
tary complexity class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛿 (resp. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤𝛿) to be the set of distributional uni-
tary synthesis problems

(︁
U = (𝑈𝑥)𝑥,Ψ = (|𝜓⟩𝑥)𝑥

)︁
where Ψ ∈ 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯 (resp. Ψ ∈ 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤)

and there exists a uniform polynomial-time (resp. polynomial-space) quantum algorithm 𝐶 that im-
plements (U ,Ψ) with average-case error 𝛿. We define 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 (resp. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤)
to be the intersection of 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯1/𝑞(𝑛) (resp. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤1/𝑞(𝑛)) over all polynomials
𝑞(𝑛).

Remark 3.11. In our definition of 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 and 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, we require that the state
sequence with respect to which the average case unitary synthesis problem is defined be in the corre-
sponding state complexity class (i.e. 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯 and 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤, respectively). We will follow this
general pattern throughout the paper: whenever we define an average case unitary complexity class,
we will require that the state sequence is in the corresponding state class (see e.g. Definition 4.2).
This is in analogy to classical average case complexity classes, where it is common to require that
the distribution over which the problem is defined can be sampled from with reasonable complexity.
As we will see e.g. in Theorem 7.12, this assumption will be necessary to prove several natural
results about average unitary complexity.
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Remark 3.12. Since an average-case unitary synthesis problem specifies both an input state |𝜓𝑥⟩ and
a unitary 𝑈𝑥 to be applied on that state, it may seem like this is just a complicated way of stating
the state synthesis problem for the state 𝑈𝑥 |𝜓𝑥⟩. This, however, is not the case: the state |𝜓𝑥⟩ is
defined on register 𝖠𝑥𝖱𝑥, but the unitary 𝑈𝑥 is only allowed to act on 𝖠𝑥. Therefore, if we imagine
that we hand a unitary synthesis problem to some black box to implement, we should imagine
that we provide as input the string 𝑥 as well as register 𝖠𝑥 of |𝜓𝑥⟩. With sufficient computational
resources, the black box can of course synthesise many more copies of |𝜓𝑥⟩ because the state is in
the corresponding state complexity class. However, to solve the unitary synthesis problem, it has
to apply the unitary on register 𝖠𝑥 of the state that we provided as input, not any other copy of
|𝜓𝑥⟩ it created itself. This is because otherwise the output state would not be entangled with our
register 𝖱𝑥 (which the black box does not have access to) in the correct way. This has the important
consequence that in contrast to state synthesis problems, in average unitary synthesis problems the
black box cannot re-run the synthesis algorithm many times and post-select on success, as it is only
provided with a single copy of a register of the input state |𝜓𝑥⟩. We therefore see that solving an
average-case unitary synthesis problem (U = (𝑈𝑥)𝑥,Ψ = (|𝜓𝑥⟩)𝑥) is potentially much harder than
the state synthesis problem for the sequence Ψ′ := (𝑈𝑥 |𝜓𝑥⟩)𝑥. Conversely, if we can show that
(U ,Ψ) is in some average unitary complexity class, it immediately follows that the state synthesis
problem Ψ′ is in the corresponding state complexity class.

Non-uniform unitary synthesis classes. The classes 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 and 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 are uni-
form complexity classes in the sense that a unitary synthesis problem U = (𝑈𝑥)𝑥 in either class
must be implemented by a uniform quantum algorithm, i.e. a collection of circuits 𝐶 = (𝐶𝑥)𝑥 that
are uniformly generated by a single (classical) Turing machine.

However one can also consider nonuniform variants of these classes, where the circuits 𝐶𝑥 are
not required to be uniformly generated by a Turing machine. These are analogous to nonuniform
complexity classes like 𝖯/𝗉𝗈𝗅𝗒 in classical complexity theory, but there is one key difference: the
implementation algorithm can have a different circuit for each instance 𝑥, whereas the definition
of 𝖯/𝗉𝗈𝗅𝗒 only allows the circuit to depend on the input length. If the circuits in the definition of
𝖯/𝗉𝗈𝗅𝗒 could depend on the instance, then all languages would trivially be in 𝖯/𝗉𝗈𝗅𝗒: the circuit
could just output 1 or 0 depending on whether the instance were in the language.

As we will see in Section 8, this notion of nonuniformity allows us to establish a tight connection
between the (non-uniform) complexity of unitary synthesis problems and the hardness of breaking
various quantum cryptographic primitives.

Definition 3.13 (𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒). Let 𝛿 : ℕ → ℝ be a function. Define the unitary complexity
class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒𝛿 to be the set of unitary synthesis problems U = (𝑈𝑥)𝑥 for which there exists
a non-uniform polynomial-size family of quantum algorithms 𝐶𝑥 that implements U with worst-
case error 𝛿. We define 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒 to be the intersection of 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒1/𝑞(𝑛) for all
polynomials 𝑞(𝑛).

We also define an nonuniform variant of 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯.

Definition 3.14 (𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒). Let 𝛿 : ℕ → ℝ be a function. Define the unitary
complexity class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒𝛿 to be the set of distributional unitary synthesis problems(︁
U = (𝑈𝑥)𝑥,Ψ = (|𝜓⟩𝑥)𝑥

)︁
where Ψ ∈ 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯 and there exists a non-uniform polynomial-size

family of quantum circuits (𝐶𝑥)𝑥 that implements (U ,Ψ) with average-case error 𝛿. We define
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒 to be the intersection of 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒1/𝑞(𝑛) for all polynomials 𝑞(𝑛).
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One can also define non-uniform versions of these classes with quantum advice, e.g.,
𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗊𝗉𝗈𝗅𝗒, but we leave that for future work.

3.3 Reductions

Notions of reductions are crucial in complexity theory and theoretical computer science. We intro-
duce a basic notion of reduction that allows one to relate one unitary synthesis problem to another.
First, we to formalize the notion of circuits that can make queries to a unitary synthesis oracle.
Intuitively, a quantum circuit with access to a unitary synthesis oracle is just like a normal quantum
circuit, except that it can apply some set of partial isometries (or more precisely arbitrary channel
completions of partial isometries) in a single computational step by using the unitary synthesis
oracle.

Definition 3.15 (Quantum query circuits). A quantum query circuit 𝐶* specifies a sequence of
gates like those in a general quantum circuit (defined in Section 2.3), except it may also include
special “oracle gates”. An oracle gate is specified by a label 𝑦 ∈ {0, 1}*; its action on its input qubits
will be specified separately, i.e. a quantum query circuit is not actually a quantum circuit, but rather
a template for a quantum circuit.

Section 3.3 depicts an example of a quantum query circuit.

/

𝑈𝑥1|0⟩

𝑈𝑥2|0⟩

|0⟩

Figure 1: An example of a quantum query circuit that calls members of a unitary synthesis problem
U ; the subscripts 𝑥1, 𝑥2 denote instances that are hardcoded in the query circuit.

Definition 3.16 (Instantiations of quantum query circuits). An instantiation of a quantum query
circuit 𝐶* with a unitary synthesis problem U = (𝑈𝑥), denoted 𝐶U , is a quantum channel obtained
from 𝐶* by replacing all the oracle gates with label 𝑦 by some channel completion of 𝑈𝑦 (which can
be different each time 𝑈𝑦 is called). Whenever we write 𝐶U , we implicitly require that U is such
that the input and output registers of 𝑈𝑦 match the input and output registers of any oracle gate
with label 𝑦 in 𝐶*.

Definition 3.17 (Uniformity of quantum query circuits). We say that a family (𝐶*𝑥)𝑥 of quantum
query circuits is time-uniform (resp. space-uniform) if there exists a classical polynomial time (resp.
polynomial space) Turing machine that on input 𝑥 outputs a description of 𝐶𝑥 and furthermore all
labels 𝑦 in an oracle gate in 𝐶*𝑥 satisfy |𝑦| = poly(|𝑥|). For brevity, we also call a time-uniform
(resp. space-uniform) family of quantum query circuits a polynomial time (resp. polynomial space)
quantum query algorithm. If 𝐶* = (𝐶*𝑥)𝑥 is a quantum query algorithm, then we write 𝐶V to
denote a family of instantiations (𝐶V

𝑥 )𝑥. Just like for individual query circuits, for families of query
circuits we call 𝐶V an instantiation of 𝐶*.
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We note that our definition of quantum query circuit has the classical instances 𝑦 “hardcoded”
into the description of the circuit. In particular, the query circuit cannot choose which oracles
it queries depending on its quantum input.10 To accommodate situations when the oracle circuit
may want to query different oracles U = (𝑈𝑥)𝑥 (perhaps even in superposition), one can define a
“controlled oracle” �̃�𝑛 =

∑︀
𝑥:|𝑥|=𝑛 |𝑥⟩⟨𝑥|⊗𝑈𝑥. In other words, �̃�𝑛 applies the oracle 𝑈𝑥 conditioned on

some 𝑛-qubit register being in the state |𝑥⟩. A quantum query circuit with access to this controlled
oracle can then apply different 𝑈𝑥 coherently depending on its quantum input, i.e. the controlled
oracle gives a query circuit more power than the uncontrolled one.

We also note that the instantiation 𝐶V is not unique because the oracle gates can implement
any channel completion of the partial isometries 𝑉𝑥 ∈ V . Whenever we say that a statement holds
for 𝐶V , we mean that it holds for all possible instantiations, i.e. for all possible choices of channel
completions.

Using quantum query circuits, we can define reductions between unitary synthesis problems.

Definition 3.18 (Reductions between unitary synthesis problems). Let U = (𝑈𝑥)𝑥 and V = (𝑉𝑥)𝑥
denote unitary synthesis problems. Then U (polynomial-time) reduces to V if for all polynomials
𝑞(𝑛) there exists a polynomial-time quantum query algorithm 𝐶* such all instantiations 𝐶V of 𝐶*

implement U with worst-case error 1/𝑞(|𝑥|).

Just like one can define oracle complexity classes like 𝖯3SAT (i.e., polynomial-time computation
with oracle access to a 3SAT oracle), we can now also define oracle complexity classes for unitary
synthesis problems:

Definition 3.19 (Oracle unitary complexity classes). We define the oracle class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯V to
be the set of all unitary synthesis problems that are polynomial-time reducible to a unitary synthesis
problem V .

We can also define reductions between distributional unitary synthesis problems, analogously to
how reductions between distributional problems are defined in classical average case complexity.

First, we need to define what it means for a query circuit to be instantiated with an average-case
implementation of an oracle.

Definition 3.20 (Average-case instantiation of a query circuit). Let (V = (𝑈𝑥)𝑥,Ψ = (|𝜓𝑥⟩)𝑥)
denote a distributional unitary synthesis problem. Let 𝜖(𝑛) be a function and let 𝐶* denote a
quantum query circuit that queries 𝑈𝑥1 , 𝑈𝑥2 , . . . , 𝑈𝑥𝑚 . An 𝜖-error average-case instantiation of 𝐶*

with (U ,Ψ), denoted by 𝐶(U ,Ψ), is a quantum channel obtained from 𝐶* by replacing all the oracle
gates with label 𝑥 by some quantum algorithm (which can be different each time 𝑈𝑥 is called) that
implements 𝑈𝑥 on the distribution 𝜓𝑥 with average-case error 𝜖(|𝑥|).

Furthermore, whenever we write 𝐶(U ,Ψ), we implicitly require that U is such that the input and
output registers of 𝑈𝑥 match the input and output registers of any oracle gate with label 𝑥 in 𝐶*.

We note that the error 𝜖 in an “𝜖-error average-case instantiation” only refers to the error with
which the oracle gates are implemented, not the error of the output of the overall quantum query
circuit. The latter will of course depend on 𝜖, but also on other factors, e.g. how many oracle queries
are made and how sensitive the overall output is to errors in the oracle implementation.

We now define reductions between distributional problems.
10Of course, for a family of query circuits (𝐶*

𝑥), the labels 𝑦 used by 𝐶*
𝑥 can depend on the index 𝑥; the point here

is that a given 𝐶*
𝑥 cannot compute the labels 𝑦 as a function of the quantum input it is given.
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Definition 3.21 (Reductions between distributional problems). Let
(︁
U = (𝑈𝑥)𝑥,Ψ = (|𝜓𝑥⟩)𝑥

)︁
and

(︁
V = (𝑉𝑥)𝑥,Ω = (|𝜔𝑥⟩)𝑥

)︁
denote distributional unitary synthesis problems. Then (U ,Ψ)

(polynomial-time) reduces to (V ,Ω) if for all polynomials 𝑞(𝑛) there exists a polynomial-time quan-
tum query algorithm 𝐶* and a polynomial 𝑟(𝑛) such that all 1/𝑟(𝑛)-error average-case instantiations
𝐶(V ,Ω) implement (U ,Ψ) with average-case error 1/𝑞(𝑛).

Next we aim to define the oracle class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯(V ,Ω). For this, we will have to specify a
state complexity class which the distributional states are required to be from. For 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯,
we required that the distributional states be from 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯. However, if we give the 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯
oracle access to (V ,Ω), it is natural to allow the same oracle access for the preparation of the
distributional states, too. Therefore, we have to specify a notion “oracle state complexity class”,
which we will naturally denote by 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯(V ,Ω). Similar definitions can be made for other state
classes in addition to 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯.

Definition 3.22 (Oracle state complexity classes). Let
(︁
V = (𝑉𝑥)𝑥,Ω = (|𝜔𝑥⟩)𝑥

)︁
be a distributional

unitary synthesis problem. We define the oracle state complexity class 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯(V ,Ω) to be the set
of state families Ψ = (|𝜓𝑥⟩)𝑥 where for all polynomials 𝑞(𝑛) there exists a polynomial-time quantum
query algorithm 𝐶* = (𝐶*𝑥)𝑥 and a polynomial 𝑟(𝑛) such that for all 𝑥, all 1/𝑟(𝑛)-error average-case
instantiations 𝐶(V ,Ψ)

𝑥 on the all zeroes input outputs a state that is 1/𝑞(𝑛)-close to |𝜓𝑥⟩.

In other words, a state family Ψ = (|𝜓𝑥⟩)𝑥 is in 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯(V ,Ω) if it can be synthesized by
polynomial-sized circuits that also have the ability to query algorithms that solve V in the average
case. We now define the oracle class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯(V ,Ω):

Definition 3.23 (Average-case oracle unitary complexity classes). We define the oracle class
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯(V ,Ω) to be the set of all distributional problems (U ,Ψ) that are polynomial-time
reducible to the distributional unitary synthesis problem (V ,Ω) and for which Ψ ∈ 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯(V ,Ω).

Just like for classical complexity classes, we can use this notion of reduction to define hard and
complete problems for (average-case) unitary complexity classes.

Definition 3.24 (Hard and complete problems). We call a unitary synthesis problem U hard (under
polynomial-time reductions) for a unitary complexity class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖢 if 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖢 ⊆ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯U . If
additionally U ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖢, we call U complete for the class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖢.

Analogously, we call a distributional unitary synthesis problem (U ,Ψ) hard (under polynomial-
time reductions) for an average-case unitary complexity class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖢 if 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖢 ⊆
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯(U ,Ψ). If additionally (U ,Ψ) ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖢, we call (U ,Ψ) complete for the class
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖢.

As would be expected, 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 and 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 are closed under polynomial-time reduc-
tions.

Lemma 3.25. 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 is closed under polynomial-time reductions, i.e. for all V ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯,
we have that 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯V ⊆ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯.

Likewise, 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 is closed under polynomial-time reductions, i.e. for all (V ,Ω) ∈
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯, we have that 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯(V ,Ω) ⊆ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯.
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Proof. Consider a unitary synthesis problem U = (𝑈𝑥)𝑥 ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯V . By definition, for all
polynomials 𝑞 there exists a polynomial-time quantum query algorithm 𝐶* = (𝐶*𝑥)𝑥 such that all
instantiations 𝐶V

𝑥 implement 𝑈𝑥 with worst-case error 1/𝑞(|𝑥|). Since V ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯, for all
polynomials 𝑝 there exists a polynomial-size circuit family 𝐶𝑦 such that 𝐶𝑦 is 1/𝑝(|𝑦|)-close to a
channel completion of 𝑉𝑦. Since 𝐶*𝑥 can include 𝑟(|𝑥|) = poly(|𝑥|) many oracle gates with labels 𝑦
such that |𝑦| = poly(|𝑥|), we can simply replace each oracle gate by the polynomial-time circuit 𝐶𝑦;
this will yield another polynomial-size circuit, and this circuit will be (𝑟(|𝑥|)/𝑝(poly(|𝑥|))+1/𝑞(|𝑥|))-
close to a channel completion of 𝑈𝑥 by the triangle inequality and monotonicity property of the
diamond norm. Since 𝑝, 𝑞 can be chosen arbitrarily large, we get that U ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯. The
statement for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 follows analogously after noting that for (V ,Ω) ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯,
𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯(V ,Ω) ⊆ 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯.

The same statement holds for 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 and 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, too.

Lemma 3.26. 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 is closed under polynomial-time reductions, i.e. for all V ∈
𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, we have that 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯V ⊆ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤.

Similarly, 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 is closed under polynomial-time reductions, i.e. for all (V ,Ω) ∈
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, we have that 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯(V ,Ω) ⊆ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤.

Proof. The proof for the worst-case class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 is identical to that of Lemma 3.25. The
proof for the average-case setting is analogous, too, except that we now need to ensure that the
distributional states Ψ ∈ 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯(V ,Ω) allowed by the oracle class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯(V ,Ω) are also valid
input states for a problem in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤; that is we need to show that 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯(V ,Ω) ⊆
𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 for a distributional problem (V ,Ω) ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤. This is easily seen to hold
by the same argument we used for Lemma 3.25: we can simply replace all oracle calls in the
state preparation procedure for Ψ ∈ 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯(V ,Ω) by the corresponding space-uniform circuit that
implements (V ,Ω); since there are at most polynomially oracle calls, the result is a space-uniform
circuit, so Ψ ∈ 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤.

3.4 Discussion and open problems

In this section, we have introduced a formal framework for studying the complexity of unitary synthe-
sis problems. We have already seen the unitary complexity classes 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 and 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤,
as well as their average-case versions. In the next section, we will consider interactive proofs for uni-
tary synthesis problems, which will naturally lead us to define the classes 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 and 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪.
This, however, is by no means a full list of all unitary complexity classes that might be of interest
— our aim here is to introduce the classes relevant to the Uhlmann transformation problem, not to
provide a complete account. As such, it is natural to consider the following question.

Open Problem 1. What are other unitary complexity classes that naturally relate to physically
interesting problems? For example, is there a useful notion of 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖬𝖠?

Later in this paper, we will prove some results relating unitary complexity classes to one an-
other. However, one would naturally conjecture that certain unitary complexity classes are in fact
different, e.g. one would expect 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 ̸= 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤. For decision languages, proving such
separations unconditionally is significantly out of reach of current techniques. However, it is not
clear whether this necessarily constitutes a barrier for proving similar results in the unitary set-
ting, as it might for example be possible that 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 ̸= 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, but 𝖡𝖰𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤.
Therefore, another interesting question is the following:
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Open Problem 2. Are there barriers from traditional complexity theory to proving unitary com-
plexity class separations?

Another important direction is to find complete problems for unitary complexity classes. We
make progress on this by showing that (certain variants of) of the Uhlmann transformation problem
are complete for certain unitary classes, but there might be other interesting complete problems for
other unitary classes. One natural option is the following:

Open Problem 3. Is Hamiltonian Fast-Forwarding [AA17] complete for 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤?

One can also consider variations of the model for unitary synthesis. In this paper, we always
assume that the unitary needs to be applied on a single copy of an unknown state. However, it
might also make sense to consider a model where an implementation of a unitary is allowed to
“consume” multiple copies of an input state, but only has to produce a single output state.

Open Problem 4. How can a multi-input version of unitary synthesis problems be formalised,
including cases where the unitary is supposed to act on a part of a larger pure state? Are there
meaningful notions of reductions and complexity classes of unitary synthesis problems in this multi-
input model?

4 Interactive Proofs for Unitary Synthesis

In this section we introduce the model of interactive proofs for unitary synthesis problems, as well
as the corresponding unitary complexity classes. In particular we introduce the unitary synthesis
classes 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 and 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪, which are analogues of 𝖰𝖨𝖯 and (average-case) 𝖲𝖹𝖪, respec-
tively. As we will see in Sections 6 and 7, the complexity of such interactive proof classes is captured
by the Uhlmann Transformation Problem.

4.1 Quantum interactive protocols

First we formally describe the model of quantum interactive protocols. (For a more in-depth account
we refer the reader to the survey of Vidick and Watrous [VW16].) Since in quantum computing
the standard model of computation is the quantum circuit model (rather than quantum Turing
machines), we model the verifier in a quantum interactive protocol as a sequence of verifier circuits,
one for each input length. A verifier circuit is itself a tuple of quantum circuits that correspond to
the operations performed by the verifier in each round of the protocol.

More formally, a 𝑘-round quantum verifier circuit 𝐶 = (𝐶𝑗)𝑗∈[𝑘] is a tuple of general quantum
circuits that each act on a pair of registers (𝖵,𝖬). The register 𝖵 is further divided into disjoint
sub-registers (𝖵𝗐𝗈𝗋𝗄,𝖵fl𝖺𝗀,𝖵𝗈𝗎𝗍). The register 𝖵𝗐𝗈𝗋𝗄 is the verifier circuit’s “workspace", the register
𝖵fl𝖺𝗀 is a single qubit indicating whether the verifier accepts or rejects, and the register 𝖵𝗈𝗎𝗍 holds
the verifier’s output (if applicable). The register 𝖬 is the message register. The size of a verifier
circuit 𝐶 is the sum of the circuit sizes of the 𝐶𝑗 ’s.

A quantum prover 𝑃 for a verifier circuit 𝐶 is a unitary that acts on 𝖬 as well as a disjoint
register 𝖯. Note that we could also define the prover to be a collection of unitaries, one for each
round, in analogy to the verifier; the two definitions are equivalent since we can always combine
the single-round unitaries into a larger unitary that keeps track of which round is being executed
and applies the corresponding single-round unitary. Since we will rarely deal with prover unitaries
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for individual rounds, we will find it more convenient to just treat the prover as one large unitary.
Furthermore, since the prover register is of unbounded size, we can assume without loss of generality
that the prover applies a unitary (rather than a quantum channel).

Let |𝜓⟩ denote a quantum state whose size is at most the number of qubits in 𝖵𝗐𝗈𝗋𝗄. We
write 𝐶(|𝜓⟩)⇆𝑃 to denote the interaction between the verifier circuit 𝐶 and the prover 𝑃 on
input 𝜌, which is defined according to the following process. The initial state of the system is
|𝜑0⟩ = |𝜓, 0 · · · 0⟩𝖵𝗐𝗈𝗋𝗄

|0 · · · 0⟩𝖵fl𝖺𝗀𝖵𝗈𝗎𝗍𝖬𝖯. Inductively define |𝜑𝑖⟩ = 𝑃 |𝜑𝑖−1⟩ for odd 𝑖 ≤ 2𝑘, and
|𝜑𝑖⟩ = 𝐶𝑖/2 |𝜑𝑖−1⟩ for even 𝑖 ≤ 2𝑘. We say that 𝐶(|𝜓⟩)⇆𝑃 accepts (resp. rejects) if measuring
the register 𝖵fl𝖺𝗀 in the standard basis yields the outcome 1 (resp. 0). We say that the output of
𝐶(|𝜓⟩)⇆𝑃 conditioned on accepting is the density matrix

Tr𝖵𝖬𝖯∖𝖵𝗈𝗎𝗍

(︁
|1⟩⟨1|𝖵fl𝖺𝗀

· 𝜑2𝑘
)︁

Tr
(︁
|1⟩⟨1|𝖵fl𝖺𝗀

· 𝜑2𝑘
)︁ ;

in other words, it is the reduced density matrix of |𝜑2𝑘⟩ on register 𝖵𝗈𝗎𝗍, conditioned on 𝐶(|𝜓⟩)⇆𝑃
accepting. (If the probability of accepting is 0, then we leave the output undefined.)

A quantum verifier 𝑉 = (𝑉𝑥)𝑥∈{0,1}* is a uniform sequence of polynomial-size and polynomial-
round quantum verifier circuits.

4.2 Interactive proofs for unitary synthesis

We now present our notion of interactive protocols for unitary synthesis.

Definition 4.1 (𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯). Let 𝑐, 𝑠, 𝛿 : ℕ → [0, 1] be functions. The class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯𝑐,𝑠,𝛿 is the
set of unitary synthesis problems U = (𝑈𝑥)𝑥 where there exists a polynomial-time quantum verifier
𝑉 = (𝑉𝑥)𝑥∈{0,1}* satisfying, for all 𝑥 ∈ {0, 1}* of sufficiently large length,

• Completeness: There exists a quantum prover 𝑃 (called an honest prover) such that for all
input states |𝜓⟩ in the support of 𝑈𝑥,

Pr[𝑉𝑥(|𝜓⟩)⇆𝑃 accepts] ≥ 𝑐(|𝑥|)

• Soundness: For all input states |𝜓⟩ and for all quantum provers 𝑃 , there exists a channel
completion of Φ𝑥 of 𝑈𝑥 such that

if Pr[𝑉𝑥(|𝜓⟩)⇆𝑃 accepts] ≥ 𝑠(|𝑥|) then td(𝜎,Φ𝑥(𝜓)) ≤ 𝛿(|𝑥|) ,

where 𝜎 denotes the output of 𝑉𝑥(|𝜓⟩)⇆𝑃 conditioned on accepting.

Here the probabilities are over the randomness of the interaction.
Finally, define

𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯𝛿 =
⋃︁

𝜖(𝑛) negl

𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯1−𝜖, 1
2
,𝛿

where the union is over all negligible functions 𝜖(𝑛), and define

𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 =
⋂︁

𝑞(𝑛) poly

𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯1/𝑞(𝑛)

where the intersection ranges over all polynomials 𝑞(𝑛).
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Intuitively, a unitary synthesis problem U = (𝑈𝑥)𝑥 has an interactive proof if a polynomial-
time verifier who receives a pair (𝑥, |𝜓⟩) can interact with an all-powerful prover, and conditioned
on accepting, output a state close to 𝑈𝑥 |𝜓⟩.

The class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 is analogous to the state synthesis class 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 introduced by [RY22]; the
only difference is that a 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 verifier for the state family Ψ = (|𝜓𝑥⟩)𝑥 has its input registers fixed
to the all zeroes state, and in the soundness condition, if a prover makes 𝑉𝑥 accept with probability
at least 𝑠(𝑛), then its output conditioned on accepting is close to the target state |𝜓𝑥⟩.

We make a few remarks regarding the definition. First, one may notice a peculiar asymmetry
between the definitions of the classes 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯𝛿 and 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯. The class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯𝛿 is defined
as a union over completeness parameters 𝑐(𝑛) = 1− 𝜖(𝑛) for some negligible function 𝜖(𝑛). This is
because we want to consider unitary synthesis protocols as long as there is an honest prover that
can be accepted with probability 1− 𝜖(𝑛) for some negligible function 𝜖(𝑛); we do not want to fix a
particular negligible function. On the other hand, the class 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 is defined as the intersection
of 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯1/𝑞(𝑛) over all choices of polynomials 𝑞(𝑛). Here the quantity 1/𝑞(𝑛) denotes how well
the output state (conditioned on the verifier accepting) approximates the target state, and we want
to consider state sequences where for all polynomials 𝑞(𝑛) there is a protocol that can synthesize
the state with error smaller than 1/𝑞(𝑛) (for sufficiently large 𝑛).

A second remark concerns the default choice of soundness 𝑠(𝑛) = 1
2 for the definition of

𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯𝛿 and 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯. In the state synthesis setting, the soundness parameter can be generi-
cally amplified via sequential repetition (see [RY22] for a proof). Thus the class 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 is the same
for any soundness, completeness parameters that are separated by at least an inverse polynomial.
It is not clear whether soundness amplification is possible in the unitary synthesis setting, however.
This is because the verifier only gets one copy of the input state, and if a verifier does not accept
the interaction it is unclear how to recover the input state for another repetition of the protocol.
This motivates the following open question.

Open Problem 5. Can completeness/soundness amplification be performed for 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯, or is
there evidence that it’s not possible?

In analogy to Definition 4.1, we also define an average-case complexity version of 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯,
where the verifier only has to synthesize the desired unitary well on a given distribution state.

Definition 4.2 (𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯). Let 𝑐, 𝑠, 𝛿 : ℕ→ [0, 1] be functions. The class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯𝑐,𝑠,𝛿 is
the set of distributional unitary synthesis problems (U = (𝑈𝑥)𝑥,Ψ = (|𝜓𝑥⟩)𝑥) such that Ψ ∈ 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯
and there exists a polynomial-time quantum verifier 𝑉 = (𝑉𝑥)𝑥∈{0,1}* satisfying, for all 𝑥 ∈ {0, 1}*
of sufficiently large length,

• Completeness: There exists a quantum prover 𝑃 (called an honest prover) such that

Pr[𝑉𝑥(|𝜓𝑥⟩)⇆𝑃 accepts] ≥ 𝑐(|𝑥|)

• Soundness: For all quantum provers 𝑃 , there exists a channel completion Φ𝑥 of 𝑈𝑥 such that

if Pr[𝑉𝑥(|𝜓𝑥⟩)⇆𝑃 accepts] ≥ 𝑠(|𝑥|) then td(𝜎, (Φ𝑥 ⊗ id)(𝜓𝑥)) ≤ 𝛿(|𝑥|) .

where 𝜎 denotes the output of 𝑉𝑥(|𝜓𝑥⟩)⇆𝑃 conditioned on accepting and 𝑉𝑥 acts the identity
on the ancilla register of |𝜓𝑥⟩.
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Here the probabilities are over the randomness of the interaction. Finally, define

𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯𝛿 =
⋃︁

𝜖(𝑛) negl

𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯1−𝜖, 1
2
,𝛿

where the union is over all negligible functions 𝜖(𝑛), and define

𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 =
⋂︁

𝑞(𝑛) poly

𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯1/𝑞(𝑛)

where the intersection ranges over all polynomials 𝑞(𝑛).

For this section, we only consider single-prover interactive protocols. However, in traditional
(classical and quantum) complexity theory, multi-prover protocols have been shown to be surpris-
ingly powerful [BFL91, JNV+21]. It is natural to ask whether multi-prover models might also
provide additional power (and insights) in the unitary synthesis setting:

Open Problem 6. Is there a meaningful notion of multi-prover unitary synthesis protocols, and
what is their power?

A related question concerns distributed protocols for unitary synthesis, where multiple provers
have to apply a unitary collectively under certain resource constraints. Such a scenario was recently
studied for state synthesis problems [GMN22], and it is natural to ask what can be said in the
unitary synthesis setting.

Open Problem 7. How are unitary synthesis problems related to distributed quantum computa-
tion?

4.3 Zero-knowledge protocols for state and unitary synthesis

In this section we present a notion of zero knowledge for unitary synthesis problems. A priori, it
is unclear how to reasonably define zero knowledge in the unitary synthesis setting. First, defining
zero-knowledge quantum protocols for decision languages is already challenging, as the notion of
“view” in the quantum setting is less straightforward than with classical protocols [Wat02, Wat06].
Second, in the unitary synthesis setting the verifier additionally gets one copy of an unknown state
|𝜓⟩ for the quantum part of its input; this poses an additional conceptual difficulty in trying to
come up with a reasonable notion of zero knowledge simulation.

We first explore several attempts to define zero knowledge for unitary synthesis, and highlight
their shortcomings. A first attempt is to require that the view of the verifier, when given instance
𝑥 and a quantum input |𝜓⟩ and interacts with the honest prover, can be efficiently output by the
simulator Sim that only receives instance 𝑥 and state |𝜓⟩ as input and does not interact with the
prover. However, since the verifier supposed to end up with 𝑈𝑥 |𝜓⟩ at the end of the protocol,
this means that the simulator can output 𝑈𝑥 |𝜓⟩ from 𝑥 and |𝜓⟩ in polynomial time, meaning that
U ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯. This would lead to an uninteresting definition of zero knowledge.

A second attempt to define zero knowledge is inspired by simulation-based security, where we
allow the simulator to query the ideal Uhlmann transformation 𝑈𝑥 once. In particular, the simulator
gets as input the honest verifier’s input |𝜓⟩, and gets a single query to 𝑈𝑥, before being asked to
output the verifier’s view. This still seems problematic in the honest verifier setting, since the
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simulator might decide to query 𝑈𝑥 on a state other than |𝜓⟩. If it does that, it seems tricky to
argue that the verifier does not learn anything from the interaction since it could potentially learn
the target unitary transformation applied to a state that is completely unrelated to the input.

These difficulties point to the core issue with devising a notion of zero knowledge in the unitary
synthesis setting. With the standard definition of zero knowledge for decision problems, the input
and outputs of the verifier are fully specified for the simulator: in particular, the simulator only has
to reproduce the interaction in the accepting case. In the unitary synthesis setting, the verifier does
not have a full classical description of what state it is supposed to output: the classical string 𝑥
provides the simulator with a complete classical description of the partial isometry 𝑈𝑥, but it only
gets the input state |𝜓⟩ in quantum form.

This motivates us to define a notion of honest-verifier, average-case zero knowledge for unitary
synthesis, where we consider verifiers that get a classical input 𝑥 and an input state that comes
from half of a distribution state |𝜓𝑥⟩. We assume the distribution state |𝜓𝑥⟩ has an efficient classical
description (i.e. it comes from a 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯 state family). Thus, the input/output behavior of the
unitary synthesis protocol when both the verifier and prover are honest is completely specified,
which then allows for the possibility of a simulator. Although this is seemingly a weak notion of
zero knowledge, as we will see in Section 6 it captures the complexity of the Uhlmann Transformation
Problem.

Definition 4.3 (𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV). Let 𝑐, 𝑠, 𝛿 : ℕ → [0, 1] be functions. The class
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV,𝑐,𝑠,𝛿 is the set of distributional unitary synthesis problems (U ,Ψ) with U =
(𝑈𝑥)𝑥 and Ψ = (|𝜓𝑥⟩)𝑥 ∈ 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯 for which there exists a polynomial-time quantum verifier
𝑉 * = (𝑉 *𝑥 )𝑥∈{0,1}* (called the honest verifier), an unbounded prover 𝑃 * (called the honest prover),
and a polynomial-time quantum algorithm Sim (called the simulator) such that for sufficiently long
𝑥 ∈ {0, 1}*,

1. The prover 𝑃 * on input 𝑥 is accepted with probability at least 𝑐(|𝑥|).

2. The verifier 𝑉 * satisfies the soundness condition (in Definition 4.2) of an 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯𝑐,𝑠,𝛿
verifier for (U ,Ψ).

3. There exists a negligible function 𝜖 : ℕ→ ℝ such that the simulator Sim, on input (𝑥, 𝑟) (for
𝑟 ∈ ℕ), outputs a state 𝜌 satisfying

td(𝜌, 𝜎𝑥,𝑟) ≤ 𝜖(|𝑥|)

where 𝜎𝑥,𝑟 is the reduced density matrix of the verifier 𝑉 *𝑥 ’s private register (which was given
the target register of the distribution state |𝜓𝑥⟩), and the purifying register of |𝜓𝑥⟩, immediately
after the 𝑟’th round of interaction with the honest prover 𝑃 *.

Finally, define
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV,𝛿 =

⋃︁
𝜖(𝑛) negl

𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV,1−𝜖, 1
2
,𝛿 ,

where the union ranges over all negligible functions 𝜖(𝑛), and

𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV =
⋂︁

𝑞(𝑛) poly

𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV,1/𝑞(𝑛)

where the intersection ranges over all polynomials 𝑞(𝑛).
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Note that the definition of 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 (Definition 4.2 already includes a completeness condi-
tion. However, we need to list the completeness condition for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪 explicitly because we
need to ensure that the prover 𝑃 * for whom the completeness condition holds is the same as the
prover 𝑃 * in the zero-knowledge condition.

We now make several additional remarks regarding the zero knowledge definition.

Simulation of the average case. If we think of running a unitary synthesis protocol on the
distribution state |𝜓𝑥⟩, then from the point of view of the verifier, it is given a pure state input
|𝜑⟩ sampled from a distribution corresponding to the reduced density matrix of |𝜓𝑥⟩. Let 𝒟𝑥
denote this distribution of pure states. (This distribution may not be unique because the spectral
decomposition is not unique, but the end result is the same.) Then in this definition the simulator’s
job is to produce the view of the verifier averaged over inputs sampled from 𝒟𝑥. In other words, the
simulator does not have to reproduce the view of the verifier on any specific input state |𝜑⟩, just on
average.

Complexity of the distribution state. The distribution state sequence Ψ associated with a
distributional unitary synthesis problem in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV is required to be in 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯, instead
of some notion of 𝗌𝗍𝖺𝗍𝖾𝖲𝖹𝖪HV. In the definition of 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV we require that the simulator
can output the state between an honest verifier and honest prover after each round. It is easy to
see that any reasonable definition of 𝗌𝗍𝖺𝗍𝖾𝖲𝖹𝖪HV results in the same class as 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯.

Honest-verifier versus general zero knowledge. A natural question is whether this definition
of zero knowledge can be meaningfully generalized to the malicious verifier setting, where the
interaction between the honest prover and verifier can be efficiently simulated even if the verifier
deviates from the protocol. This is typically the notion of zero knowledge that is useful in the
cryptographic setting. It is known that in both the classical and quantum settings, the malicious
verifier and honest verifier definitions of statistical zero knowledge proofs yield the same complexity
classes (i.e., 𝖲𝖹𝖪 = 𝖲𝖹𝖪HV and 𝖰𝖲𝖹𝖪 = 𝖰𝖲𝖹𝖪HV) [Oka96, GSV98, Wat06]. We leave studying
stronger notions of zero knowledge protocols for unitary synthesis to future work:

Open Problem 8. Is there a meaningful notion of malicious verifier zero knowledge for unitary
synthesis problems, and how is that related to the honest verifier setting that we considered here?
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Part II

Uhlmann Transformation Problem: Definitions
and Structural Results

5 Definition of the Uhlmann Transformation Problem

In this section we formally define the Uhlmann Transformation Problem as a unitary synthesis
problem. We also define a “succinct” version of it, in which the two input states |𝐶⟩ , |𝐷⟩ that specify
an instance of the Uhlmann Transformation Problem, while exponentially complex, nonetheless have
a polynomial-size description.

5.1 Uhlmann’s theorem and canonical isometries

We begin by recalling Uhlmann’s theorem.

Theorem 5.1 (Uhlmann’s theorem). Let |𝜓⟩𝖠𝖡 and |𝜙⟩𝖠𝖡 be pure states on registers 𝖠𝖡 and denote
their reduced states on register 𝖠 by 𝜌𝖠 and 𝜎𝖠, respectively. Then, there exists a unitary 𝑈𝖡 acting
only on register 𝖡 such that

F(𝜌𝖠, 𝜎𝖠) = | ⟨𝜙|𝖠𝖡 (id𝖠 ⊗ 𝑈𝖡) |𝜓⟩𝖠𝖡 |
2 .

We now would like to define a unitary synthesis problem (𝑈𝑥)𝑥 corresponding to Uhlmann’s the-
orem. Intuitively, whenever the string 𝑥 represents a pair of bipartite states |𝜓⟩ , |𝜙⟩ (by specifying
circuits for them, for example), the unitary 𝑈𝑥 should satisfy the conclusion of Uhlmann’s theorem.
However are several subtleties that arise. First, the unitary 𝑈𝖡 in Theorem 5.1 is not unique; outside
of the support of 𝜌𝖡 = Tr𝖠(|𝜓⟩⟨𝜓|𝖠𝖡), 𝑈𝐵 can act arbitrarily. This motivates defining a canonical
Uhlmann transformation 𝑊 corresponding to a pair of bipartite states |𝜓⟩𝖠𝖡 , |𝜙⟩𝖠𝖡. A natural can-
didate is 𝑊 = sgn(Tr𝖠(|𝜙⟩⟨𝜓|)) where for any linear operator 𝐾 with singular value decomposition
𝑈Σ𝑉 †, we define sgn(𝐾) = 𝑈 sgn(Σ)𝑉 † with sgn(Σ) denoting replacing all the nonzero entries of
Σ with 1 (which is the same as the usual sign function since all singular values are non-negative).
A proof that 𝑊 is a partial isometry satisfying F(𝜌, 𝜎) = | ⟨𝜙| id⊗𝑊 |𝜓⟩ |2 can be found in [MY23,
Lemma 7.6]. This Uhlmann transformation is also minimal in the sense that any other partial
isometry �̃� that achieves the same guarantee satisfies 𝑊 †𝑊 ≤ �̃� †�̃� .

However, this definition of canonical Uhlmann transformation is not robust in the sense that
arbitrarily small changes to the states |𝜓⟩ , |𝜙⟩ could result in arbitrarily large changes in 𝑊 as
measured by, say, the operator norm. Consider the following two-qutrit example:

|𝜓⟩ =
√
1− 𝜖 |00⟩+

√︀
𝜖/2 |11⟩+

√︀
𝜖/2 |22⟩ ,

|𝜓⟩ =
√
1− 𝜖 |00⟩+

√︀
𝜖/2 |12⟩+

√︀
𝜖/2 |21⟩ ,

|𝜙⟩ = |𝜓⟩ .

The Uhlmann isometry 𝑊 corresponding to (|𝜓⟩ , |𝜙⟩) is simply the identity operator on ℂ3. On
the other hand, the Uhlmann isometry �̃� corresponding to (|𝜓⟩ , |𝜙⟩) can be computed as

�̃� = |0⟩⟨0|+ |1⟩⟨2|+ |2⟩⟨1| .
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In other words, it swaps |1⟩ with |2⟩ and keeps |0⟩ unchanged. The difference 𝑊 − �̃� has operator
norm at least 2, but the difference |𝜓⟩ − |𝜓⟩ has norm at most 𝜖, which can be arbitrarily small.
We would like a definition of the canonical Uhlmann isometry that is insensitive to extremely small
changes in the states |𝜓⟩ , |𝜙⟩.

Finally, for convenience, we only focus on bipartite states that have the same number of qubits
on each side. This is not a severe assumption as we can always pad the smaller register with ancilla
zero qubits, which does not affect the existence of an Uhlmann transformation.

These points motivate the following definition of canonical Uhlmann isometry. First, some
notation: for 𝜂 ∈ ℝ and an operator 𝐾 with singular value decomposition 𝑈Σ𝑉 †, we define sgn𝜂(𝐾)
to be the operator

sgn𝜂(𝐾) = 𝑈 sgn𝜂(Σ)𝑉
†

where sgn𝜂(Σ) denotes the projection onto the eigenvectors of Σ with eigenvalue greater than 𝜂. In
other words, sgn𝜂 is the scalar function that behaves like the usual sgn function on inputs |𝑥| > 𝜂,
and maps inputs |𝑥| ≤ 𝜂 to 0; this scalar function is applied to the diagonal matrix Σ in the usual
way. We also write sgn(𝐾) to denote sgn0(𝐾). Using sgn𝜂 instead of sgn in the definition of the
Uhlmann partial isometry removes the sensitivity to arbitrarily small changes to the input states
discussed above. The parameter 𝜂 can be thought of as a cutoff below which changes in the input
states are ignored.

Definition 5.2 (Canonical Uhlmann partial isometry). The canonical Uhlmann partial isometry
with cutoff 𝜂 corresponding to a pair of pure states (|𝜓⟩𝖠𝖡 , |𝜙⟩𝖠𝖡) is defined as

𝑊 = sgn𝜂(Tr𝖠(|𝜙⟩⟨𝜓|)) . (5.1)

For brevity we call 𝑊 the canonical 𝜂-Uhlmann isometry.

We verify several basic properties of the canonical 𝜂-Uhlmann isometry.

Proposition 5.3. The map 𝑊 defined in Equation (5.1) is a partial isometry, and satisfies the
following. Let 𝜌, 𝜎 denote the reduced density matrices of |𝜓⟩ , |𝜙⟩, respectively, on register 𝖠.

1. (Approximate Uhlmann transformation) The isometry 𝑊 approximately maps |𝜓⟩ to |𝜙⟩, i.e.,

| ⟨𝜙|𝖠𝖡 (id𝖠 ⊗𝑊𝖡) |𝜓⟩𝖠𝖡 |
2 ≥ F(𝜌𝖠, 𝜎𝖠)− 2𝜂 dim(𝖡) ,

2. (Minimality) For all partial isometries 𝑅𝖡 satisfying

F(𝜌𝖠, 𝜎𝖠) = | ⟨𝜙|𝖠𝖡 (id𝖠 ⊗𝑅𝖡) |𝜓⟩𝖠𝖡 |
2 ,

we have 𝑊 †𝑊 ≤ 𝑅†𝑅.

Proof. Let 𝑋,𝑌 be unitary operators acting on register 𝖡 such that

|𝜓⟩ = √𝜌⊗𝑋 |Ω⟩
|𝜙⟩ =

√
𝜎 ⊗ 𝑌 |Ω⟩

where |Ω⟩ =
∑︀

𝑖 |𝑖⟩𝖠 |𝑖⟩𝖡 is the unnormalized maximally entangled state in the standard basis. Let
𝑈Σ𝑉 † denote the singular value decomposition of (√𝜌

√
𝜎)⊤, the transpose of √𝜌

√
𝜎 with respect

to the standard basis. Then the proof of [MY23, Lemma 7.6] shows that

𝑊 = 𝑌 𝑈 sgn𝜂(Σ)𝑉
†𝑋† . (5.2)
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The fact that 𝑊 is a partial isometry is clear: since the matrices 𝑋,𝑈, 𝑉, 𝑌 are unitary and
sgn𝜂(Σ) is a projection, it can be written in the form 𝑊 = Π𝐹 where Π = 𝑋𝑈 sgn𝜂(Σ)𝑈

†𝑋† is a
projection and 𝐹 = 𝑋𝑈𝑉 †𝑌 † is a unitary. To show the approximate transformation statement, we
note that the proof of [MY23, Lemma 7.6] shows that

⟨𝜙|𝖠𝖡 (id𝖠 ⊗𝑊𝖡) |𝜓⟩𝖠𝖡 = Tr(
√
𝜎
√
𝜌 sgn𝜂(

√
𝜌
√
𝜎))

where sgn𝜂(𝐾) for an arbitrary operator 𝐾 with singular value decomposition 𝑅Σ𝑄† is defined to
be 𝑅 sgn𝜂(𝜎)𝑄

†. The preceding centered equation is equal to

Tr(
√
𝜎
√
𝜌 sgn(

√
𝜌
√
𝜎))− Tr

(︁√
𝜎
√
𝜌
(︀
sgn(
√
𝜌
√
𝜎)− sgn𝜂(

√
𝜌
√
𝜎
)︀
)
)︁

≥
√︀

F(𝜎, 𝜌)− Tr
(︁√

𝜎
√
𝜌
(︀
sgn(
√
𝜌
√
𝜎)− sgn𝜂(

√
𝜌
√
𝜎
)︀
)
)︁

(5.3)

where in the last line we used that F(𝜎, 𝜌) = Tr(|
√
𝜎
√
𝜌|)2 and that Tr(𝐾 sgn(𝐾†)) = Tr(|𝐾|) for

all operators 𝐾. Letting 𝑈Σ𝑉 † denote the singular value decomposition of (√𝜌
√
𝜎)⊤, we have that

𝑈Σ𝑉 ⊤ is the singular value decomposition of
√
𝜎
√
𝜌. Thus Equation (5.3) is equal to√︀

F(𝜎, 𝜌)− Tr(Σ(sgn(Σ)− sgn𝜂(Σ))) ≥
√︀

F(𝜎, 𝜌)− 𝜂 dim(𝖡)

where we used that sgn(Σ) − sgn𝜂(Σ)) is the projector onto the eigenvectors of Σ with eigenvalue
smaller than 𝜂. Squaring both sides, we get:(︁√︀

F(𝜎, 𝜌)− 𝜂 dim(𝖡)
)︁2

= F(𝜎, 𝜌)− 2
√︀
F(𝜎, 𝜌)𝜂 dim(𝖡) + 𝜂2 dim(𝖡)2 ≥ F(𝜎, 𝜌)− 2𝜂 dim(𝖡)

where we used that 0 ≤ F(𝜎, 𝜌) ≤ 1. This shows the approximation statement.
For the minimality statement, we note that the proof of Uhlmann’s theorem [Wil13, Theorem

9.2.1] shows that

| ⟨𝜙|𝖠𝖡 (id𝖠 ⊗𝑅𝖡) |𝜓⟩𝖠𝖡 |
2 = |Tr(

√
𝜎
√
𝜌 (𝑌 †𝑅𝑋)⊤)|2 = |Tr((𝑌 †𝑅𝑋)(

√
𝜎
√
𝜌)⊤)|2

where in the last step we used |Tr(𝐾)| = |Tr(𝐾⊤)| for all operators 𝐾. Let 𝑄 = 𝑌 †𝑅𝑋, and note
that the singular value decomposition of (

√
𝜎
√
𝜌)⊤ is 𝑉 Σ𝑈 †. By the Cauchy-Schwarz inequality for

matrices, we have

|Tr((𝑌 †𝑅𝑋)(
√
𝜎
√
𝜌)⊤)|2 = |Tr(𝑄𝑉 Σ1/2Σ1/2𝑈 †)|2 ≤ Tr(𝑄𝑉 Σ𝑉 †𝑄†) Tr(𝑈Σ𝑈 †)

= Tr(Σ𝑉 †𝑄†𝑄𝑉 ) Tr(Σ) ≤ Tr(Σ)2

where in the last line we used that the operator norm of 𝑉 †𝑄†𝑄𝑉 is at most 1. If | ⟨𝜙|𝖠𝖡 (id𝖠 ⊗
𝑅𝖡) |𝜓⟩𝖠𝖡 |2 = F(𝜌, 𝜎)2 = Tr(|

√
𝜎
√
𝜌|) = Tr(Σ)2, then this implies that

Tr(Σ𝑉 †𝑄†𝑄𝑉 ) = Tr(Σ) .

Since Σ and 𝑉 †𝑄†𝑄𝑉 are positive semidefinite, and 𝑉 †𝑄†𝑄𝑉 has operator norm at most 1, this
implies that 𝑉 †𝑄†𝑄𝑉 acts as the identity on the support of Σ; in particular, 𝑉 †𝑄†𝑄𝑉 ≥ sgn(Σ) in
the positive semidefinite ordering. This is equivalent to

𝑅†𝑅 ≥ 𝑋𝑉 sgn(Σ)𝑉 †𝑋† ≥ 𝑋𝑉 sgn𝜂(Σ)𝑉
†𝑋† =𝑊 †𝑊

as desired.
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5.2 Worst-case Uhlmann transformation problem

We now define explicit and succinct descriptions of quantum circuits.

Definition 5.4 (Explicit and succinct descriptions of quantum circuits). An explicit description of
a unitary quantum circuit 𝐶 is a sequence (1𝑛, 𝑔1, 𝑔2, . . .) where 1𝑛 represents in unary the number
of qubits that 𝐶 acts on, and 𝑔1, 𝑔2, 𝑔3, . . . is a sequence of unitary gates.

A succinct description of a quantum circuit 𝐶 is a pair (1𝑛, 𝐶) where 𝐶 is a description of a
classical circuit11 that takes as input an integer 𝑡 in binary and outputs the description a unitary
gate 𝑔𝑡 coming from some universal gate set, as well as the (constant-sized) set of qubits that 𝑔𝑡 acts
on. Together, the gates 𝑔1, . . . , 𝑔𝑇 describe a circuit 𝐶 acting on 𝑛 qubits; we will always denote the
classical circuit with a hat (e.g. 𝐶) and use the same latter without a hat (e.g. 𝐶) for the associated
quantum circuit.

We make a few remarks about the definitions of explicit and succinct descriptions of quantum
circuits:

(i) The length of an explicit description of a quantum circuit is polynomial in the number of
qubits it acts on as well as the number of gates in the circuit.

(ii) In a succinct description of a quantum circuit 𝐶, the size of the circuit may be exponentially
larger than the length of the description (1𝑛, 𝐶). However, the number of qubits that 𝐶 acts
on is polynomial (in fact, at most linear) in the description length.

(iii) For a succinct description, we provide the number of qubits 𝑛 in the quantum circuit explicitly
in unary because given only the classical circuit 𝐶 it may be difficult to compute the the
number of qubits that the quantum circuit 𝐶 acts on.

We now define two variants of the Uhlmann Transformation Problem. In the first, the two
bipartite states are described by explicit circuit descriptions, and in the second they are described
by succinct circuit descriptions.

Definition 5.5 (Valid Uhlmann instances). We say that a string 𝑥 ∈ {0, 1}* is a valid Uhlmann
instance if it encodes a tuple (1𝑛, 𝐶,𝐷) where 𝐶,𝐷 are explicit descriptions of unitary circuits that
each act on 2𝑛 qubits. We say that 𝑥 is a valid succinct Uhlmann instance if 𝑥 = (1𝑛, 𝐶, �̂�) is a
succinct description of a pair (𝐶,𝐷) of unitary circuits that each act on 2𝑛 qubits for some 𝑛.

We further say that a valid (possibly succinct) Uhlmann instance 𝑥 is a fidelity-𝜅 instance if the
reduced states 𝜌, 𝜎 of the states |𝐶⟩ = 𝐶 |02𝑛⟩, |𝐷⟩ = 𝐷 |02𝑛⟩ on the first 𝑛 qubits satisfy F(𝜌, 𝜎) ≥ 𝜅.

Definition 5.6 (Uhlmann Transformation Problem). Let 𝜅, 𝜂 : ℕ→ [0, 1] be functions. The (𝜅, 𝜂)-
Uhlmann Transformation Problem is the unitary synthesis problem Uhlmann𝜅,𝜂 = (𝑈𝑥)𝑥∈{0,1}*
where whenever 𝑥 is a fidelity-𝜅(𝑛) Uhlmann instance specifying a pair (𝐶,𝐷) of unitary circuits
that each act on 2𝑛 qubits for some 𝑛, then 𝑈𝑥 is the canonical 𝜂-Uhlmann isometry for the states
|𝐶⟩ = 𝐶 |02𝑛⟩ and |𝐷⟩ = 𝐷 |02𝑛⟩, with 𝑈𝑥 acting on the last 𝑛 qubits. Otherwise if 𝑥 is not a valid
Uhlmann instance, then we define 𝑈𝑥 = 0 (i.e., a partial isometry with zero-dimensional support).

The (𝜅, 𝜂)-Succinct Uhlmann Transformation Problem, denoted by SuccinctUhlmann𝜅,𝜂, is
the sequence (𝑈𝑥)𝑥 where whenever 𝑥 is a valid fidelity-𝜅(𝑛) succinct Uhlmann instance specifying

11Here, we think of 𝐶 as being a list of AND, OR, and NOT gates.
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a pair (𝐶,𝐷) of unitary circuits that each act on 2𝑛 qubits for some 𝑛, then 𝑈𝑥 is the canonical
𝜂-Uhlmann isometry for the states |𝐶⟩ = 𝐶 |02𝑛⟩ and |𝐷⟩ = 𝐷 |02𝑛⟩, with 𝑈𝑥 acting on the last 𝑛
qubits; if 𝑥 is not a valid succinct Uhlmann instance, then we define 𝑈𝑥 = 0.

Although we defined the Uhlmann and SuccinctUhlmann problems as parameterized by the
cutoff parameter 𝜂 for the sake of robustness of the definitions, we will see next that when we focus
on distributional versions of these problems the 𝜂 parameter can be without loss of generality set
to 0. The cutoff parameter 𝜂 only really matters for complexity results about solving Uhlmann or
SuccinctUhlmann in the worst-case.

5.3 Distributional Uhlmann transformation problem

To define average case versions of the Uhlmann Transformation Problems we specify a distribution
state |𝜓𝑥⟩ for every valid (succinct or non-succinct) Uhlmann instance 𝑥. If 𝑥 specifies a pair of
circuits (𝐶,𝐷) on 2𝑛 qubits each, the distribution state |𝜓𝑥⟩ is also on 2𝑛 qubits. As we argue below,
a natural choice of distribution state is |𝜓𝑥⟩ = 𝐶 |02𝑛⟩. When 𝑥 represents a fidelity-1 Uhlmann
instance the Uhlmann transformation 𝑈𝑥 by definition maps |𝜓𝑥⟩ to 𝐷 |02𝑛⟩.

Definition 5.7 (Distributional Uhlmann Transformation Problems). We define a state sequence
ΨUhlmann = (|𝜓𝑥⟩)𝑥∈{0,1}* as follows: for all 𝑥 ∈ {0, 1}*,

|𝜓𝑥⟩ =

{︃
|𝐶⟩ if 𝑥 = (1𝑛, 𝐶,𝐷) is valid Uhlmann instance,
0 otherwise.

Then, the distributional (𝜅, 𝜂)-Uhlmann Transformation Problem is the distributional unitary syn-
thesis problem DistUhlmann𝜅,𝜂 = (Uhlmann𝜅,𝜂,ΨUhlmann).

Analogously, we define the state family ΨSuccinctUhlmann = (|𝜓𝑥⟩)𝑥 as follows: for all 𝑥 ∈
{0, 1}*,

|𝜓𝑥⟩ =

{︃
|𝐶⟩ if 𝑥 = (1𝑛, 𝐶, �̂�) is valid succinct Uhlmann instance,
0 otherwise.

The distributional (𝜅, 𝜂)-Succinct Uhlmann Transformation Problem is the distributional unitary
synthesis problem DistSuccinctUhlmann𝜅,𝜂 = (SuccinctUhlmann𝜅,𝜂,ΨSuccinctUhlmann).

We now argue that this choice of distribution state is natural for the Uhlmann Transformation
Problems: being able to solve the distributional Uhlmann Transformation Problems in the average-
case essentially coincides with being able to perform the Uhlmann transformation corresponding
to a pair of (succinctly or non-succinctly described) states. The next proposition captures this
equivalence in the high 𝜅 regime, where 𝜅 is close to 1.

Proposition 5.8. Let 𝑀 = (𝑀𝑥)𝑥 be a quantum algorithm where for each valid fidelity-𝜅(𝑛)
Uhlmann (resp. Succinct Uhlmann) instance 𝑥 = (1𝑛, 𝐶,𝐷) (resp. 𝑥 = (1𝑛, 𝐶, �̂�)),

F
(︁
(id⊗𝑀𝑥)(|𝐶⟩⟨𝐶|), |𝐷⟩⟨𝐷|

)︁
≥ 𝜅(𝑛)− 𝛿(𝑛) (5.4)

for some error function 𝛿(𝑛), where 𝑀𝑥 acts on the second 𝑛 qubits of |𝐶⟩. Then 𝑀 imple-
ments DistUhlmann𝜅,0 (resp. DistSuccinctUhlmann𝜅,0) with average-case error 6

√︀
1− 𝜅(𝑛)+√︀

𝛿(𝑛).
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Conversely, suppose that a (uniform or nonuniform) quantum algorithm 𝑀 = (𝑀𝑥)𝑥 implements
DistUhlmann𝜅,0 (resp. DistSuccinctUhlmann𝜅,0) with average-case error 𝛿. Then for all valid
fidelity-𝜅(𝑛) Uhlmann (resp. Succinct Uhlmann) instances 𝑥 = (1𝑛, 𝐶,𝐷) (resp. 𝑥 = (1𝑛, 𝐶, �̂�)),
the following holds:

F
(︁
(id⊗𝑀𝑥)(|𝐶⟩⟨𝐶|), |𝐷⟩⟨𝐷|

)︁
≥
(︁
1− 𝛿(𝑛)− 5

√︀
1− 𝜅(𝑛)

)︁2
.

Proof. We will prove this proposition for the case of Uhlmann instances; the case of succinct
Uhlmann instances is entirely analogous. Throughout the proof we abuse notation slightly and
write 𝛿 = 𝛿(𝑛) and 𝜅 = 𝜅(𝑛).

We begin with the first part of the proposition. Fix a valid fidelity-𝜅(𝑛) Uhlmann instance
𝑥 = (1𝑛, 𝐶,𝐷). Let 𝜂 = 0 and let𝑊 denote the canonical 𝜂-Uhlmann partial isometry corresponding
to (|𝐶⟩ , |𝐷⟩). Let 𝑈 = 𝑊 + (id −𝑊 †𝑊 ), which is a (non-partial) isometry. Let Φ(𝐾) = 𝑈𝐾𝑈 †

and note that it is a channel completion of the partial isometry 𝑊 . (This is in fact the most
straightforward channel completion: it simply applies 𝑊 on the support of 𝑊 , and the identity on
the orthogonal complement of the support of 𝑊 .) We will show that

td((id⊗ Φ) |𝐶⟩⟨𝐶| , |𝐷⟩⟨𝐷|) ≤ 5
√
1− 𝜅 . (5.5)

Before proving this, let us see how this implies the first part of the proposition. By the triangle
inequality, we have

td
(︁
(id⊗𝑀𝑥)(|𝐶⟩⟨𝐶|), (id⊗ Φ)(|𝐶⟩⟨𝐶|)

)︁
≤ td

(︁
(id⊗𝑀𝑥)(|𝐶⟩⟨𝐶|), |𝐷⟩⟨𝐷|

)︁
+ td

(︁
|𝐷⟩⟨𝐷| , (id⊗ Φ)(|𝐶⟩⟨𝐶|)

)︁
≤
√
1− 𝜅+ 𝛿 + 5

√
1− 𝜅

≤ 6
√
1− 𝜅+

√
𝛿

where in the third line we applied the Fuchs-van de Graaf inequality to Equation (5.4) and also
used Equation (5.5). This shows that one the state |𝐶⟩, 𝑀𝑥 behaves (approximately) like a channel
completion of the Uhlmann partial isometry. By Definition 3.5, this means that 𝑀𝑥 (approximately)
implements the DistUhlmann problem as claimed in the first part of the proposition.

We now prove Equation (5.5). The main issue we have to deal with is that for 𝜅 < 1, the support
of the reduced state of |𝐶⟩ on the second half of the qubits may not be contained in the support of
the Uhlmann partial isometry. As a result, taking Φ to be a channel completion of the Uhlmann
partial isometry as above, it is not the case that Φ(|𝐶⟩⟨𝐶|) = (id ⊗𝑊 ) |𝐶⟩⟨𝐶| (id ⊗𝑊 †). (This
equation does of course hold for 𝜅 = 1.)

To deal with this issue, we need to consider the state |𝐶⟩ projected onto the support of the
Uhlmann partial isometry. To this end, let Π =𝑊 †𝑊 denote the projector onto the support of 𝑊 .
Let |𝐶 ′⟩ denote the (re-normalized) projection of |𝐶⟩ onto id⊗Π:

|𝐶 ′⟩ = (id⊗Π) |𝐶⟩⟨𝐶| (id⊗Π)

Tr((id⊗Π) |𝐶⟩⟨𝐶|)
.

By the Gentle Measurement Lemma [Wil13, Section 9.4], we have

td(|𝐶⟩⟨𝐶| , |𝐶 ′⟩⟨𝐶 ′|) ≤ 2
√︀

1− Tr((id⊗Π) |𝐶⟩⟨𝐶|) . (5.6)
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Note that since the projection id ⊗ Π is at least (id ⊗ 𝑊 †) |𝐷⟩⟨𝐷| (id ⊗ 𝑊 ) in the positive
semidefinite ordering, we have

Tr((id⊗Π) |𝐶⟩⟨𝐶|) ≥ Tr
(︁
(id⊗𝑊 †) |𝐷⟩⟨𝐷| (id⊗𝑊 ) |𝐶⟩⟨𝐶|

)︁
= F(𝜌, 𝜎) ≥ 𝜅 (5.7)

where 𝜌, 𝜎 denote the reduced density matrices of |𝐶⟩ , |𝐷⟩ respectively. Applying the triangle
inequality, we have

td((id⊗ Φ) |𝐶⟩⟨𝐶| , |𝐷⟩⟨𝐷|) ≤ td((id⊗ Φ) |𝐶⟩⟨𝐶| , (id⊗ Φ) |𝐶 ′⟩⟨𝐶 ′|) + td((id⊗ Φ) |𝐶 ′⟩⟨𝐶 ′| , |𝐷⟩⟨𝐷|)
≤ td(|𝐶⟩⟨𝐶| , |𝐶 ′⟩⟨𝐶 ′|) + td((id⊗𝑊 ) |𝐶 ′⟩⟨𝐶 ′| (id⊗𝑊 †), |𝐷⟩⟨𝐷|)
≤ 2
√
1− 𝜅+ td((id⊗𝑊 ) |𝐶 ′⟩⟨𝐶 ′| (id⊗𝑊 †), |𝐷⟩⟨𝐷|)

where in the second line we used the monotonicity of the trace distance under quantum channels and
the fact that |𝐶 ′⟩ is supported on Π, and in the last line we used Equation (5.6) and Equation (5.7).
To bound the last term we use the triangle inequality again:

td((id⊗𝑊 ) |𝐶 ′⟩⟨𝐶 ′| (id⊗𝑊 †), |𝐷⟩⟨𝐷|)
≤ td(|𝐶⟩⟨𝐶| , |𝐶 ′⟩⟨𝐶 ′|) + td((id⊗𝑊 ) |𝐶⟩⟨𝐶| (id⊗𝑊 †), |𝐷⟩⟨𝐷|)
≤ 3
√
1− 𝜅

where in the last line we applied the Fuchs-van de Graaf inequality to F((id ⊗ 𝑊 ) |𝐶⟩⟨𝐶| (id ⊗
𝑊 †), |𝐷⟩⟨𝐷|) ≥ 𝜅. This concludes the proof of Equation (5.5).

We now prove the “Conversely” part of the proposition. Again fix a valid fidelity-𝜅(𝑛) Uhlmann
instance 𝑥 = (1𝑛, 𝐶,𝐷). By Definition 3.5, there exists a channel completion Φ of the Uhlmann
transformation 𝑊 corresponding to the states |𝐶⟩ , |𝐷⟩ such that

td
(︁
(id⊗𝑀𝑥) |𝐶⟩⟨𝐶| , (id⊗ Φ) |𝐶⟩⟨𝐶|

)︁
≤ 𝛿 . (5.8)

By the triangle inequality

td
(︁
(id⊗𝑀𝑥)(|𝐶⟩⟨𝐶|), |𝐷⟩⟨𝐷|

)︁
≤ td

(︁
(id⊗𝑀𝑥)(|𝐶⟩⟨𝐶|), (id⊗ Φ) |𝐶⟩⟨𝐶|

)︁
+ td

(︁
(id⊗ Φ) |𝐶⟩⟨𝐶| , (id⊗ Φ) |𝐶 ′⟩⟨𝐶 ′|

)︁
+ td

(︁
(id⊗ Φ) |𝐶 ′⟩⟨𝐶 ′| , |𝐷⟩⟨𝐷|

)︁
. (5.9)

By Equation (5.8), the first term is at most 𝛿. Using the same argument as above, by the mono-
tonicity of trace distance under quantum channels and the Gentle Measurement Lemma, the second
term of Equation (5.9) is at most 2

√
1− 𝜅. Similarly, the third term of Equation (5.9) is bounded

by 3
√
1− 𝜅 as shown above.

Putting everything together, we can upper bound Equation (5.9) by

td
(︁
(id⊗𝑀𝑥)(|𝐶⟩⟨𝐶|), |𝐷⟩⟨𝐷|

)︁
≤ 𝛿 + 5

√
1− 𝜅 .

Applying the Fuchs-van de Graaf inequality yields the conclusion of the proposition.
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Proposition 5.8 indicates that in the average-case setting and the setting of 𝜅 close to 1, the 𝜂
cutoff parameter can be without loss of generality set to 0, as alluded to earlier. This is because
Proposition 5.8 shows that solving the distributional versions of Uhlmann or SuccinctUhlmann
is equivalent to approximately mapping |𝐶⟩ to |𝐷⟩ while acting only on the second half of the qubits.
This second statement, however, is clearly robust to small perturbations: if a quantum algorithm
𝑀 can approximately map |𝐶⟩ to |𝐷⟩, then it can also approximately map |𝐶 ′⟩ and |𝐷′⟩ where
|𝐶 ′⟩ ≈ |𝐶⟩ and |𝐷′⟩ ≈ |𝐷⟩. Thus the subtlety discussed at the beginning of the section about the
need for a cutoff parameter 𝜂 does not arise.

Since we mainly deal with solving Uhlmann or SuccinctUhlmann in the average case and
in the high 𝜅 regime, we will from now omit mention of the 𝜂 parameter and implicitly assume it is
set to 0. The only place where we explicitly need the 𝜂 parameter is in Section 7.3, where we sketch
how SuccinctUhlmann1,𝜂 for exponentially small cutoff 𝜂 is a complete problem for (worst-case)
𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤.

Finally, we pose a question about the tightness of Proposition 5.8.

Open Problem 9. Can Proposition 5.8 be improved to give meaningful guarantees when the
fidelity parameter 𝜅 is bounded away from 1?

Improving it would be helpful when reasoning about Uhlmann transformations for Uhlmann𝜅
instances with small 𝜅 (for an example of this, see Section 8.2).

6 Structural Results about the Uhlmann Transformation Problem

Having defined the Uhlmann Transformation Problem and its succinct version as unitary synthesis
problems, we now prove some structural results about their complexity. Specifically we show that
the distributional Uhlmann Transformation Problem is complete for the zero knowledge unitary
complexity class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV defined in Section 4. We also prove a hardness amplification re-
sult for the Uhlmann Transformation Problem, which has cryptographic applications as we discuss
in Section 8. We then introduce a simple “padding trick” that shows that the complexity of the
distributional Uhlmann Transformation Problem is the same for all 𝜅 that is polynomially-bounded
away from 0 or 1. As discussed in the previous section, since we are only dealing with the distribu-
tional Uhlmann Transformation Problem, we set the cutoff parameter 𝜂 to 0 and omit reference to
it.

6.1 Completeness for unitary zero knowledge

In this section we show that DistUhlmann1−negl is complete for the unitary complexity class
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV (see Section 4.3 for the definition of this class). What we mean by this is that for
every negligible function negl(𝑛), the distributional unitary synthesis problem DistUhlmann1−negl
is contained in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV, and every problem in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV is polynomial-time re-
ducible to DistUhlmann1−negl for some negligible function negl(𝑛) (related to the simulation
error of the problem).

We first introduce the notation employed throughout this section. A register block 𝖱[𝑖:𝑗] is
an ordered collection of registers, denoted as 𝖱[𝑖:𝑗] := 𝖱𝑖𝖱𝑖+1 . . .𝖱𝑗 , with the size of the collection
defined as, |𝖱[𝑖:𝑗]| := 𝑗 − 𝑖 + 1. When the first index is omitted, the collection is taken to start
at 𝑖 = 1, so 𝖱[𝑚] = 𝖱1 . . .𝖱𝑚. For a permutation 𝜋 on |𝖱[0:𝑚]| elements, we use 𝑃𝜋 to denote the
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unitary for a “block permutation” that permutes the registers inside a block in the obvious way, and
𝒫𝜋(·) = 𝑃𝜋(·)𝑃 †𝜋 the associated channel.

We first show that for all negligible functions 𝜇(𝑛), DistUhlmann1−𝜇 is contained in
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV in Proposition 6.1. Then, in Proposition 6.5 we show that DistUhlmann1−negl
is 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV-hard, i.e. that any problem in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV polynomial-time reduces to
DistUhlmann1−𝜖 for some negligible function 𝜖(𝑛). In Theorem 6.7, we combine these two state-
ments to conclude that DistUhlmann1−negl is complete for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV.

6.1.1 DistUhlmann1−negl ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV

Proposition 6.1. DistUhlmann1−𝜇 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV for all negligible functions 𝜇(𝑛).

Proof. Let 𝜇(𝑛) be a negligible function. We show that for all polynomials 𝑞, DistUhlmann1−𝜇 ∈
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV,1−𝜈,1/2,1/𝑞 for 𝜈(𝑛) = 32𝑞(𝑛)2𝜇(𝑛); since 𝜈(𝑛) is still negligible, this suffices to
show the proposition. For this, we need to design a protocol that satisfies the conditions from
Definition 4.3. Consider the following protocol (Protocol 1).

Protocol 1. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV,1−𝜈, 1
2
,1/𝑞 verifier for DistUhlmann1−𝜇

Input: A valid Uhlmann1−𝜇 instance 𝑥 = (1𝑛, 𝐶,𝐷), and an 𝑛 qubit quantum register 𝖡0.

1. Let 𝑚 = 32𝑞(𝑛)2. Prepare the state
⨂︀𝑚

𝑖=1 |𝐶⟩𝖠𝑖𝖡𝑖 . Select a permutation 𝜋 ∈ 𝑆𝑚+1

uniformly at random, and apply 𝒫𝜋 to the register block 𝖡[0:𝑚] = 𝖡𝟢𝖡𝟣 . . .𝖡𝗆. Send the
block 𝖡[0:𝑚] to the prover.

2. The verifier receives register block 𝖡 from the prover. Then:

(a) Apply 𝒫𝜋−1 to 𝖡[0:𝑚].

(b) Apply (𝐷†)⊗𝑚 to registers 𝖠𝖡[𝑚], and measure in the computational basis. If the
outcome is the all-0 string for all 𝑖, accept and output the 𝖡0 register. Otherwise,
reject.

Note that all registers, 𝖡𝗂 and 𝖠𝗂, used in the protocol have a dependence on the instance 𝑥, but as
the instance 𝑥 if fixed at the beginning of the protocol, we omit explicitly writing this dependence.
Protocol 1 describes the actions of the verifier. To satisfy Definition 4.3, we also need to define
an honest prover 𝑃 *, who behaves as follows: let Φ(·) be an arbitrary channel completion of the
canonical Uhlmann partial isometry for (𝐶,𝐷). Upon receipt of the registers 𝖡[0:𝑚] = 𝖡𝟢 . . .𝖡𝗆, the
honest prover 𝑃 * applies Φ(·) to each register 𝖡𝗂 individually and sends back the resulting state.

We will show that Protocol 1 with the honest prover 𝑃 * satisfies the three properties from
Definition 4.3. Since the proofs are slightly involved, we separate them out into individual lemmas,
which we prove below using the same notation and parameter settings introduced here:

1. The honest prover 𝑃 * needs to succeed with probability at least 1− 𝜈(𝑛) (Lemma 6.2).

2. The verifier needs to satisfy the soundness condition of an 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯1−𝜈,1/2,1/𝑞 protocol
(Lemma 6.3).

45



3. The protocol needs to satisfy the zero-knowledge condition (Lemma 6.4).

Combined, Lemmas 6.2 to 6.4 imply Proposition 6.1.

We now prove the individual lemmas referenced in the proof of Proposition 6.1.

Lemma 6.2 (𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 completeness). For all valid Uhlmann1−𝜇 instances 𝑥 = (1𝑛, 𝐶,𝐷),
for sufficiently large 𝑛 the honest prover 𝑃 * satisfies

Pr[𝑉𝑥(|𝐶⟩𝖠𝟢𝖡𝟢
)⇆𝑃 *] ≥ 1− 𝜈(𝑛) .

Proof. We want to show that the honest prover, who applies the optimal Uhlmann isometry, is
accepted by the verifier with probability at least 1 − 𝜈. Let 𝑊𝖡 be the optimal Uhlmann partial
isometry for the circuit pair (𝐶,𝐷). Because we are considering an Uhlmann1−𝜇 instance we have
that

1− 𝜇(𝑛) ≤ |⟨𝐷| (id𝖠 ⊗𝑊𝖡) |𝐶⟩|2 .

The honest prover action on the product state |𝐶⟩⊗𝑚+1 is exactly given by 𝑊⊗𝑚+1
𝖡 . Because the

fidelity is multiplicative under tensor products, the probability of the verifier accepting is given by(︁
|⟨𝐷| (id𝖠 ⊗ (𝑊 )𝖡) |𝐶⟩|2

)︁𝑚
≥ (1− 𝜇(𝑛))𝑚 ≥ 1−𝑚 · 𝜇(𝑛) = 1− 𝜈(𝑛) .

Additionally, after interacting with the honest prover and conditioned on accepting, the verifier has
successfully applied 𝑊 to the input state.

Lemma 6.3 (𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 soundness). For all valid Uhlmann1−𝜇 instances 𝑥 = (1𝑛, 𝐶,𝐷), for
sufficiently large 𝑛, for all quantum provers 𝑃 , there exists a channel completion Φ𝑥 of 𝑈𝑥 such that

if Pr[𝑉𝑥(|𝐶⟩)⇆𝑃 accepts] ≥ 1

2
then td(𝜎, (Φ𝑥 ⊗ id) |𝐶⟩⟨𝐶|) ≤ 1/𝑞(𝑛) ,

where 𝜎 denotes the output of 𝑉𝑥(|𝐶⟩)⇆𝑃 , conditioned on 𝑉𝑥 accepting.

Proof. We argue that soundness holds in three steps. We first show that by applying the block
permutation 𝑃𝜋 and inverting it after the interaction with the prover, the verifier has forced the
state after interacting with the prover to be a symmetric state across the registers 𝖠𝖡[0:𝑚]. Second,
we show that measuring |𝐷⟩⟨𝐷| on the 𝑚 decoy registers and accepting yields a state close to
measuring |𝐷⟩⟨𝐷| on all 𝑚+1 registers. Finally we apply the Gentle Measurement Lemma to show
that, conditioned on accepting, the verifier has a state close to the optimal Uhlmann unitary applied
to the input state.

We begin by expressing the state of the verifier’s registers after interacting with the prover
and undoing the permutation in step 2(𝑎). Assume that the verifier’s quantum input is the 𝖡𝟢

register of |𝐶⟩𝖠𝟢𝖡𝟢
(the distributional input). In the protocol, the verifier will first apply a random

permutation on 𝖡[0:𝑚]; then the prover will perform some arbitrary action on 𝖡[0:𝑚], represented
by a quantum channel Λ𝖡[0:𝑚]

; and finally the verifier will undo the random permutation from the
first step. Treating 𝖠𝟢 as the purification register of the verifier’s quantum input, the state of the
registers 𝖡[0:𝑚]𝐴[0:𝑚] after these three steps is given by

𝜌* := 𝔼
𝜋∈𝑆𝑚+1

(︁
(𝒫𝜋−1)𝖡[0:𝑚]

∘ Λ𝖡[0:𝑚]
∘ (𝒫𝜋)𝖡[0:𝑚]

⊗ id𝖠[0:𝑚]

)︁
(|𝐶⟩⟨𝐶|⊗𝑚+1) .
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Note that in addition to permuting the 𝖡[0:𝑚] registers and then permuting them back, we can
extend the permutation to include the 𝖠[0:𝑚] registers, too. This is because (𝒫𝜋)𝖠𝖡[0:𝑚]

= (𝒫𝜋)𝖠[0:𝑚]
⊗

(𝒫𝜋)𝖡[0:𝑚]
, and since Λ does not act on 𝖠[0:𝑚], the permutations on 𝖠[0:𝑚] simply cancel. Therefore,

𝜌* = 𝔼
𝜋∈𝑆𝑚+1

(︁
(𝒫𝜋−1)𝖠𝖡[0:𝑚]

∘ (Λ𝖡[0:𝑚]
⊗ id𝖠[0:𝑚]

) ∘ (𝒫𝜋)𝖠𝖡[0:𝑚]

)︁
(|𝐶⟩⟨𝐶|⊗𝑚+1) .

This state is clearly permutation-invariant, i.e. (𝒫𝜎)𝖠𝖡[0:𝑚]
(𝜌*) = 𝜌* for any permutation 𝜎 ∈ 𝑆𝑚+1.

In the last step of the protocol, the verifier performs the projective measurement {Π(0) =
|𝐷⟩⟨𝐷| ,Π(1) = id − Π(0)} on each of the systems in 𝖠𝖡[𝑚] and accepts if all of them yield out-
come 0. We define random variables 𝑋0, . . . , 𝑋𝑚 with the joint distribution

Pr[𝑋0 = 𝑏0 ∧ · · · ∧𝑋𝑚 = 𝑏𝑚] = Tr
(︁(︁
⊗𝑖=0𝑚Π

(𝑏𝑖)
𝖠𝗂𝖡𝗂

)︁
𝜌*
)︁
,

i.e. 𝑋𝑖 corresponds to the verifier’s measurement on the 𝑖-th system. Since we are assuming
Pr[𝑉𝑥(|𝐶⟩)⇆𝑃 accepts] ≥ 1

2 , we have that Pr[(𝑋1, . . . , 𝑋𝑚) = (0, . . . , 0)] ≥ 1/2. Intuitively, the
“bad outcome” is that the verifier receives outcome 0 for 𝑋1, . . . , 𝑋𝑚, but if the verifier had mea-
sured the 0-th system, he would have received outcome 1. We can bound the probability of this
happening as

Pr[𝑋0 = 1|(𝑋1, . . . , 𝑋𝑚) = (0, . . . , 0)] ≤ 2Pr[𝑋0 = 1 ∧ (𝑋1, . . . , 𝑋𝑚) = (0, . . . , 0)]

≤ 2

𝑚+ 1

𝑚+1∑︁
𝑖=0

Pr[𝑋𝑖 = 1 ∧ (𝑋𝑗)𝑗 ̸=𝑖 = (0, . . . , 0)]

≤ 2

𝑚+ 1
. (6.1)

For the first inequality, we used the definition of conditional probability and
Pr[(𝑋1, . . . , 𝑋𝑚) = (0, . . . , 0)] ≥ 1/2. For the second inequality, we used the fact that due
to the permutation-invariance of 𝜌*, the random variables (𝑋0, . . . , 𝑋𝑚) are exchangeable (i.e. their
joint distribution is invariant under permutations), and for the last inequality we used that
(𝑋𝑖 = 1 ∧ (𝑋𝑗)𝑗 ̸=𝑖 = (0, . . . , 0)) are disjoint events, so the sum of their probabilities is at most 1.

Denoting the verifier’s output state conditioned on acceptance by 𝜎, Equation (6.1) tells us that

F(𝜎, |𝐷⟩⟨𝐷|) = Tr(|𝐷⟩⟨𝐷|𝜎)2 ≥
(︁
1− 2

𝑚+ 1

)︁2
≥ 1− 4

𝑚+ 1
.

By Fuchs-van de Graaf we have

td(𝜎, |𝐷⟩⟨𝐷|) ≤
√︂

4

𝑚+ 1
.

Then Equation (5.5) in the proof of Proposition 5.8 shows that for all channel completions Φ𝑥 of
𝑈𝑥, we have that

td((Φ𝑥 ⊗ id) |𝐶⟩⟨𝐶| , |𝐷⟩⟨𝐷|) ≤ 5
√︀
𝜇(𝑛)

so therefore

td
(︁
𝜎, (Φ𝑥 ⊗ id) |𝐶⟩⟨𝐶|

)︁
≤
√︂

4

𝑚+ 1
+ 5
√︀
𝜇(𝑛) .

By the choice of 𝑚 = 32𝑞(𝑛)2, since 𝜇(𝑛) is negligible, for sufficiently large 𝑛 this is at most 1/𝑞(𝑛)
as desired. This completes the proof of Lemma 6.3.
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Lemma 6.4 (𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV zero-knowledge). There exists a negligible function negl and a
polynomial-time simulator that, on input (𝑥, 1),12 outputs a state 𝜌 satisfying

td(𝜌, 𝜎𝑥,1) ≤ negl(𝑛) ,

where 𝜎𝑥,1 is the reduced density matrix of 𝑉 *𝑥 ’s private register and the purifying register of the
input, immediately after interacting with the honest prover 𝑃 *.

Proof. The simulator simply outputs the state |𝐷⟩⊗𝑚+1. Because the fidelity is being measured
between product states, the fidelity between the simulator output and the state of the verifier after
interacting with the honest prover is(︁

|⟨𝐷| (id𝖠 ⊗𝑊𝖡) |𝐶⟩|2
)︁𝑚+1

≥ 1− (𝑚+ 1)𝜇(𝑛).

By the standard relationship between trace distance and fidelity, the trace distance between
the simulators output and the state of the verifier after interacting with the prover is at most√︀

(𝑚+ 1)𝜇(𝑛). Since 𝑚 is a polynomial in 𝑛,
√︀
(𝑚+ 1)𝜇(𝑛) is also a negligible function in 𝑛, so

the simulator satisfies the definition of 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV.

6.1.2 DistUhlmann1−negl is 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV-hard

Now we show that all problems in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV reduce to DistUhlmann1−𝜈 for some negligible
𝜈(𝑛) (which depends on the 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV-problem). We highlight the annoying fact that it is
not known if there is a single negligible function 𝜈*(𝑛) such that DistUhlmann1−𝜈* is hard for
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV. In particular, the value of 𝜈 will depend on the error to which the simulator can
prepare the verifier’s state.

Open Problem 10. Does there exist a negligible function 𝜇 such that every distributional unitary
synthesis problem in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV has a protocol, (𝑉 , 𝑃 *, Sim), such that Sim prepares the
verifiers state to within trace distance error 𝜇?

If the above problem was answered in the affirmative, then it would directly imply that there is
a single distributional unitary synthesis problem that is complete for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV. Note that
the number of rounds in the algorithm does not matter because the Padding Trick (Section 6.3)
can be used to transform a protocol with simulator error 𝛿 to one with simulator error 𝛿/𝑝 for any
polynomial 𝑝. This question is tightly related to another broader difference between 𝖲𝖹𝖪HV and
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV, which will be discussed in more detail in Section 6.4.

Proposition 6.5. Let (U = (𝑈𝑥)𝑥,Ψ = (|𝜓𝑥⟩)𝑥) be a distributional unitary synthesis problem
in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV. Then there exists a negligible function 𝜈 such that (U ,Ψ) polynomial-time
reduces to DistUhlmann1−𝜈 .

Proof. By Definition 4.3, for all polynomials 𝑞 there exists a negligible function 𝜇 such that (U ,Ψ) ∈
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV,1−𝜇,1/2,1/𝑞. Let 𝑉 * = (𝑉 *𝑥 )𝑥 be the honest, 𝑟-round 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV,1−𝜇,1/2,1/𝑞
verifier for (U ,Ψ), and let (𝑉𝑥,𝑖)

𝑟+1
𝑖=1 be the unitaries that this verifier applies throughout the pro-

tocol, where 𝑉𝑥,𝑖 is the unitary applied in the 𝑖-th round. 𝑉𝑥,𝑖 acts on a workspace register 𝖥𝗂−𝟣 and
a prover message 𝖰𝗂−𝟣, and outputs a pair of registers 𝖥𝗂𝖰𝗂. Additionally, 𝑉𝑥,0 takes in a quantum

12Note that there is only 1 interaction with the prover in the protocol.
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input in register 𝖠, and an ancilla register 𝖱. See Figure 6.1.2 for an image describing how the
verifier and prover interact.

Let Sim be the zero-knowledge simulator for 𝑉 *, and let 𝜖 be the negligible function such that
Sim, when run on input (𝑥, 𝑖), outputs a state within 𝜖(|𝑥|) of the reduced density matrix of 𝑉 *

immediately after the 𝑖-th round of interaction with the honest prover. Since Sim is a polynomial
time quantum algorithm, for all 𝑥, 𝑖 there exists a polynomial time unitary circuit Sim𝑥,𝑖 that
implements Sim(𝑥, 𝑖) (i.e. in Sim𝑥,𝑖, the input 𝑥, 𝑖 is hard-coded). Since the circuit Sim𝑥,𝑖 implements
a unitary while Sim(𝑥, 𝑖) might perform measurements and trace out registers, we need to assume
that Sim𝑥,𝑖 might require an additional (private) register 𝖯 that is traced out by Sim(𝑥, 𝑖). In this
section, we abuse notation and interchange the unitary implemented by Sim𝑥,𝑖 with the explicit
circuit description of Sim𝑥,𝑖 wherever it is clear from context which one is intended. We emphasize
that Sim𝑥,𝑖 is a fixed quantum circuit that acts only on |0⟩, and produces a purification of the state
that Sim would produce when run on input (𝑥, 𝑖). Every Sim𝑥,𝑖 acts on registers 𝖥𝗂𝖰𝗂𝖯𝖡, where 𝖥𝗂
and 𝖰𝗂 are the verifiers registers, 𝖡 is the purification register for the initial input (initially in 𝖠𝖡),
and 𝖯 is a purification register for the simulator, as explained before. Since Sim produces the state
after the interaction, we need to define an additional circuit that prepares the initial state of the
system, which we will call Sim𝑥,0. Since the initial state is in 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯, there is a polynomial-time
circuit such that (Sim𝑥,0)𝖠𝖡⊗ id𝖱 |0⟩𝖠𝖡𝖱 = |𝜓𝑥⟩⊗|0⟩𝖱, which prepares the initial state of the verifier
when run on |0⟩𝖠𝖡𝖱 (recall that the initial state of the system includes an ancilla register 𝖱 for the
verifier). We relabel the registers 𝖠𝖱 to be 𝖥𝟢𝖰𝟢 so that Sim𝑥,0 follows the pattern of the other
Sim𝑥,𝑖. Assume that every Sim𝑥,𝑖 uses a private register of the same size, and that the private
register has polynomial in |𝑥| many qubits, which we can achieve by padding every Sim𝑥,𝑖 with
extra ancilla qubits.

We now define a quantum query circuit making exactly 𝑟 calls to a DistUhlmann1−2𝜖2 oracle.
The classical label for the 𝑖-th Uhlmann oracle will be (an explicit classical description of) the
following pair (𝐴𝑖, 𝐵𝑖) of polynomial-time quantum circuits.

𝐴𝑖 = (𝑉𝑥,𝑖)𝖥𝗂−𝟣𝖰𝗂−𝟣
∘ (Sim𝑥,𝑖−1)𝖥𝗂−𝟣𝖰𝗂−𝟣𝖯𝖡

𝐵𝑖 = (Sim𝑥,𝑖)𝖥𝗂𝖰𝗂𝖯𝖡

Both of these are polynomial time quantum circuits. 𝐴𝑖 is a unitary that, when applied to
|0⟩𝖥𝑖−1𝖰𝑖−1𝖯𝖡

, prepares a purification of the verifier’s state immediately before the 𝑖-th round of
interaction. 𝐵𝑖 is a unitary that, when applied to |0⟩𝖥𝗂𝖰𝗂𝖯𝖡

, prepares the verifier’s state after the
𝑖-th round of interaction with the prover. We first show that (𝐴𝑖, 𝐵𝑖) are a valid Uhlmann1−2𝜖2
instance. Let Φ𝑖 be the channel representing the honest prover in the 𝑖-th interaction acting on 𝖰𝗂.
Let 𝜎𝑥,𝑖 be reduced the state of the verifier registers (and hidden input register 𝖡) immediately after
the 𝑖-th interaction with the honest prover. By the definition of Sim, we have that

td(Tr𝖯(|𝐴𝑖⟩⟨𝐴𝑖|), 𝑉𝑥,𝑖𝜎𝑥,𝑖−1𝑉 †𝑥,𝑖) ≤ 𝜖(|𝑥|) and (6.2)

td(Tr𝖯(|𝐵𝑖⟩⟨𝐵𝑖|), 𝜎𝑥,𝑖) ≤ 𝜖(|𝑥|). (6.3)

We also have that the state of the verifier after the 𝑖-th round of interaction can be attained by
applying the verifiers unitary 𝑉𝑥,𝑖 and the provers channel Φ𝑖 to the state after the (𝑖−1)-th round,
formally

((Φ𝑖)𝖰𝗂
⊗ id)(𝑉𝑥,𝑖𝜎𝑥,𝑖−1𝑉

†
𝑥,𝑖) = 𝜎𝑥,𝑖.
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Fix an 𝑖, and let 𝜌𝐴 and 𝜌𝐵 be the reduced states of |𝐴𝑖⟩⟨𝐴𝑖| and |𝐵𝑖⟩⟨𝐵𝑖| on 𝖥𝑖𝖡. We have that

𝐹 (𝜌𝐴, 𝜌𝐵) ≥ 𝐹 (((Φ𝑖)𝖰𝗂
⊗ 𝐼𝖥𝗂𝖡) (Tr𝖯(|𝐴𝑖⟩⟨𝐴𝑖|)),Tr𝖯(|𝐵𝑖⟩⟨𝐵𝑖|))

≥ 1− td(((Φ𝑖)𝖰𝗂
⊗ 𝐼𝖥𝗂𝖡) (Tr𝖯(|𝐴𝑖⟩⟨𝐴𝑖|)),Tr𝖯(|𝐵𝑖⟩⟨𝐵𝑖|))

2

≥ 1− td(((Φ𝑖)𝖰𝗂
⊗ 𝐼𝖥𝗂𝖡) (𝑉𝑥,𝑖𝜎𝑥,𝑖−1𝑉

†
𝑥,𝑖),Tr𝖯(|𝐵𝑖⟩⟨𝐵𝑖|))

2 − 𝜖2(|𝑥|)

≥ 1− td(((Φ𝑖)𝖰𝗂
⊗ 𝐼𝖥𝗂𝖡) (𝑉𝑥,𝑖𝜎𝑥,𝑖−1𝑉

†
𝑥,𝑖), 𝜎𝑥,𝑖)

2 − 2𝜖(|𝑥|)2

= 1− 2𝜖2(|𝑥|).

Here the first line holds because the states on the right are extensions of the states 𝜌𝐴 and 𝜌𝐵.
Because Φ𝑖 acts only on 𝖰𝑖, the reduced state of the left hand state on 𝖥𝑖𝖡 is the same as |𝐴𝑖⟩⟨𝐴𝑖|.
The subsequent lines follow because the trace distance obeys the triangle inequality and contracts
under trace preserving channels, using the inequalities from Equations (6.2) and (6.3). Note that this
means the Uhlmann unitary that acts on 𝖰𝗂 and 𝖯, since we only showed that the reduced states on
𝖥𝗂𝖡 have high fidelity with each other. Now consider the following 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯DistUhlmann1−2𝜖2

query algorithm protocol for (U ,Ψ).

Algorithm 1. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯
DistUhlmann1−2𝜖2

3/𝑞(𝑛) query algorithm for (U ,Ψ)

Input: Classical string 𝑥 specifying 𝑈𝑥 and quantum register 𝖠.

1. Initialize 𝑖← 1, register 𝖱← |0⟩⟨0| and relabel 𝖥0𝖰0 ← 𝖠𝖱. While 𝑖 ≤ 𝑟:

(a) Run 𝑉𝑥,𝑖 on 𝖥𝑖−1𝖰𝑖−1 to get a state on 𝖥𝑖𝖰𝑖, if 𝑉𝑥,𝑖 rejects, abort and output |0⟩𝖠.

(b) Call DistUhlmann1−2𝜖2 oracle on the instance corresponding to an explicit circuit
representation of (𝐴𝑖, 𝐵𝑖), and quantum register 𝖰𝗂𝖯.

(c) 𝑖← 𝑖+ 1.

2. Run 𝑉𝑥,𝑟+1 on 𝖥𝑟𝖰𝑟 to get a state on 𝖠𝖱.

3. Output register 𝖠.

In order to show that (U ,Ψ) polynomial-time reduces to DistUhlmann1−2𝜖2 , we need to show
that for all polynomials 𝑞, there exists another polynomial 𝑝 such that all 1/𝑝-error average case
instantiations of Algorithm 1 with DistUhlmann1−2𝜖2 implement (U ,Φ).

Claim 6.6. Fix a polynomial 𝑞, and let 𝑝(𝑛) = 𝑟𝑞(𝑛) (where 𝑟 is the number of rounds as before).
Then all 1/𝑝-error average case instantiations of Algorithm 1 with DistUhlmann1−2𝜖2 implement
(U ,Φ) to average case error 3/𝑞(𝑛).

Proof. We first show by induction that for every 𝑖 ≤ 𝑟, the input to the 𝑖-th DistUhlmann1−2𝜖2
oracle call is at most (𝑖−1) · (1/𝑝(𝑛)+ 𝜖

√
2) in trace distance from the “correct” distributional state

|𝐴𝑖⟩ := 𝐴𝑖 |0⟩ for which the guarantee of the DistUhlmann holds.
The input to the first call to DistUhlmann1−2𝜖2 is exactly |𝐴0⟩ = (𝑉𝑥,1)𝖠 |𝜓𝑥⟩𝖠𝖡, so the trace

distance error before the 1-st call is 0.
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|𝜓𝑥⟩

𝑉𝑥,1

𝑉𝑥,1 ∘ Sim(𝑥, 0) |0⟩ = |𝜓𝑥,1⟩

𝖡

𝑉𝑥,2

|𝜓𝑥,2⟩ = Sim(𝑥, 1) |0⟩

𝖠

𝖰1

𝖥1

𝐶𝑥 ⊗ 𝐼 |𝜓𝑥⟩𝖠𝖡

𝑉𝑥,𝑟+1

𝖱|0⟩

Φ1 Φ𝑟

Figure 2: A 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪 protocol with 𝑟 rounds. The prover recieves the 𝖠 register of |𝜓⟩𝖠𝖡.
Every round of interaction consists of the verifier applying 𝑉𝑥,𝑖 to 𝖥𝑖−1𝖰𝑖−1 to get 𝖥𝑖𝖰𝑖 and then
exchanging 𝖰𝑖 with the prover. The first and final rounds are special. In the first round, the verifier
takes in 𝖠 and a workspace 𝖱, and in the final round the verifier either accepts or rejects, and
outputs a register. Sim can be used to generate the state after every interacting with the prover.

Now assume that the claim is true up to the 𝑖-th call to DistUhlmann1−2𝜖2 . Let 𝜌𝑖 be the
input to the 𝑖-th call to DistUhlmann1−2𝜖2 . Let Φ(𝐴𝑖,𝐵𝑖) be the channel that the 𝑖-th call to the
DistUhlmann1−2𝜖2 oracle implements, and let 𝑊𝑖 be the optimal Uhlmann unitary for instance
(𝐴𝑖, 𝐵𝑖). By assumption we have that

td(Φ(𝐴𝑖,𝐵𝑖)(𝜌𝑖), |𝐵𝑖⟩⟨𝐵𝑖|) ≤ td(Φ(𝐴𝑖,𝐵𝑖)(𝜌𝑖),Φ(𝐴𝑖,𝐵𝑖)(|𝐴𝑖⟩⟨𝐴𝑖|) + td(Φ(𝐴𝑖,𝐵𝑖)(|𝐴𝑖⟩⟨𝐴𝑖|), |𝐵𝑖⟩⟨𝐵𝑖|)

≤ (𝑖− 1)(1/𝑝(𝑛) + 𝜖
√
2) + td(Φ(𝐴𝑖,𝐵𝑖)(𝐴𝑖 |0⟩⟨0|𝐴

†
𝑖 ), 𝐵𝑖 |0⟩⟨0|𝐵

†
𝑖 )

≤ (𝑖− 1)(1/𝑝(𝑛) + 𝜖
√
2) + 1/𝑝(𝑛) + td(𝑊𝑖 |𝐴𝑖⟩⟨𝐴𝑖|𝑊 †𝑖 , |𝐵𝑖⟩⟨𝐵𝑖|)

≤ 𝑖(1/𝑝(𝑛) + 𝜖
√
2)

Here we first apply the induction hypothesis and the fact that quantum channels decrease trace
distance. Then we use the fact that Φ(𝐴𝑖,𝐵𝑖) is a 1/𝑝(𝑛)-error average case solver. Finally we use
the fact that (𝐴𝑖, 𝐵𝑖) is a valid DistUhlmann1−2𝜖2 instance, so the states 𝑊𝑖 |𝐴𝑖⟩ and |𝐵𝑖⟩ are
within 𝜖

√
2 in trace distance. The state that the query algorithm gives as input to the oracle is

𝑉𝑥,𝑖+1(Φ(𝐴𝑖,𝐵𝑖)(𝜌𝑖)) ,

which is within 𝑖(1/𝑝(𝑛) + 𝜖
√
2) trace distance of |𝐴𝑖+1⟩ = 𝑉𝑥,𝑖+1 |𝐵𝑖⟩ because unitaries preserve

trace distance. By induction, for all 𝑖, the input to the 𝑖-th oracle call in the protocol is within
(𝑖− 1) · (1/𝑝(𝑛) + 𝜖

√
2). Following the same inequalities, the output of the final oracle call satisfies

td(Φ(𝐴𝑟,𝐵𝑟)(𝜌𝑟), |𝐵𝑟⟩⟨𝐵𝑟|) ≤ 𝑟(1/𝑝(𝑛) + 𝜖
√
2) .

Let 𝜎𝑥,𝑟 be the state of the verifier after the final interaction with the honest prover. Then by the
definition of the simulator, we have that

td(Φ(𝐴𝑟,𝐵𝑟)(𝜌𝑟), 𝜎𝑥,𝑟) ≤ 𝑟/𝑝(𝑛) + (𝑟 + 1)𝜖
√
2 .
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By the definition of the honest prover, there exists a negligible function 𝜇 such that the honest
prover is accepted with probability 1− 𝜇, and conditioned on accepting the verifier outputs a state
within 1/𝑞(𝑛) of 𝑈𝑥 |𝜓𝑥⟩⟨𝜓𝑥|𝑈 †𝑥 in trace distance. Thus we have that

td(𝑉𝑥,𝑟+1𝜎𝑥,𝑟𝑉
†
𝑥,𝑟+1, 𝑈𝑥 |𝜓𝑥⟩⟨𝜓𝑥|𝑈

†
𝑥) ≤ 𝜇+ 1/𝑞 .

Combining everything we have that

td(𝑉𝑥,𝑟+1Φ(𝐴𝑟,𝐵𝑟)(𝜌𝑟)𝑉
†
𝑥,𝑟+1, 𝑈𝑥 |𝜓𝑥⟩⟨𝜓𝑥|𝑈

†
𝑥)

≤ td(𝑉𝑥,𝑟+1𝜎𝑥,𝑟𝑉
†
𝑥,𝑟+1, 𝑈𝑥 |𝜓𝑥⟩⟨𝜓𝑥|𝑈

†
𝑥) + 𝑟(1/𝑝(𝑛) + 𝜖

√
2)

≤ 1/𝑞 + 𝜇+ 𝑟(1/𝑝+ 𝜖
√
2)

≤ 2/𝑞 + 𝑟𝜖
√
2 + 𝜇

≤ 3/𝑞 .

Here we use the fact that 𝑝 = 𝑟𝑞, and since 𝜖 and 𝜇 are negligible, for sufficiently large 𝑛, 𝑟𝜖
√
2+𝜇 ≤

1/𝑞.

Because (U ,Ψ) ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV, there exists a negligible function 𝜖 such that for all polyno-
mials 𝑞′, there exists a verifier that implements (U ,Ψ) with average case error 1/3𝑞′, and a simulator
that makes simulation error 𝜖. Thus for all polynomials 𝑞′, there exists a polynomial time quantum
query algorithm, specified by Algorithm 1 when 𝑉 is taken to have average case error 1/3𝑞′, and
another polynomial 𝑝 = 𝑟𝑞′, that achieves average case error 1/𝑞′ when instantiated with 1/𝑝-error
average case instantiations of DistUhlmann1−2𝜖2 . In other words, (U ,Ψ) polynomial-time reduces
to DistUhlmann1−2𝜖2 .

We summarise the results of Proposition 6.1 and Proposition 6.5 in the following theorem,
which shows that DistUhlmann1−negl is “almost complete” for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪 up to the aforemen-
tioned issue that we cannot find a single negligible function 𝜈 such that 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪 reduces to
DistUhlmann1−𝜈 .

Theorem 6.7. For all neglibible functions 𝜇, DistUhlmann1−𝜇 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV, and for all
distributional unitary synthesis problems (U ,Ψ), there exists a negligible function 𝜈 such that (U ,Ψ)
reduces to DistUhlmann1−𝜈 .

6.2 Hardness amplification

In this section, we prove a hardness amplification result for the Uhlmann Transformation Prob-
lem, which roughly states that if it is hard to implement DistUhlmann in polynomial time (i.e.,
DistUhlmann /∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯), then in fact it is hard to implement DistUhlmann even with
large average case error approaching 1. This hardness amplification statement has applications to
amplifying the security of quantum commitment schemes as we show in Section 8.

Theorem 6.8. The following two statements are equivalent:

1. For all negligible functions 𝜖(𝑛), DistUhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯
(resp. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒).
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2. For all negligible functions 𝜖(𝑛), DistUhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯1−𝜉
(resp. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒1−𝜉), where 𝜉(𝑛) = 𝑛−1/16.

While Theorem 6.8 will be useful, it is not the strongest possible amplification statement one
would hope to prove: one could hope to show that instead of just suppressing the error to an
inverse polynomial, it can actually be suppressed to an inverse exponential. We call this “strong
amplification” and leave it as an open problem:

Open Problem 11. Can strong amplification be proved? In other words, does solving the Uhlmann
transformation problem with inverse polynomial error imply being able to solve it with inverse
exponential error?

Strong amplification for Uhlmann would also have ramifications for the question of whether
quantum commitments with weak security can be boosted to commitments with strong security
(see Conjecture 8.9). This would be of independent interest for quantum cryptography.

We first give an overview of the proof of Theorem 6.8. Recall from Definition 3.10 that
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛿 denotes the class of distributional unitary synthesis problems that can be im-
plemented with average case error 𝛿, and that DistUhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 means that for
all inverse polynomials 𝛿, DistUhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛿.

The “only if” direction of the theorem is immediate: by definition, for 0 ≤ 𝛿 ≤ 𝛿′ ≤ 1 we have
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛿 ⊆ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛿′ .

For the “if” direction, the idea is to reduce implementing the Uhlmann transformation 𝑈𝑥 cor-
responding to a valid Uhlmann instance 𝑥 = (1𝑛, 𝐶,𝐷) to the task of implementing the Uhlmann
transformation for the parallel repetition of the instance, which we denote by 𝑥⊗𝑘 = (1𝑛𝑘, 𝐶⊗𝑘, 𝐷⊗𝑘)
for some integer 𝑘. If the circuits 𝐶,𝐷 acted on registers 𝖠𝖡, then the circuits 𝐶⊗𝑘, 𝐷⊗𝑘 act on
𝑘 copies denoted by 𝖠1𝖡1, . . . ,𝖠𝑘,𝖡𝑘, and output the states |𝐶⟩⊗𝑘 , |𝐷⟩⊗𝑘. What we show is that
being able to implement the repeated Uhlmann transformation with error very close to 1 can be
turned into a way of implementing the original Uhlmann transformation 𝑈𝑥 with very small error.
Put another way, if it was hard to implement the original Uhlmann transformation 𝑈𝑥 almost ex-
actly, then it is still hard to implement the repeated Uhlmann transformation even approximately.
We abstract this reduction out in the following Lemma:

Lemma 6.9. Let 𝐶,𝐷 be unitary circuits such that the states |𝐶⟩ := 𝐶 |0 . . . 0⟩ , |𝐷⟩ := 𝐷 |0 . . . 0⟩
are bipartite states on registers 𝖠𝖡. Let 𝑘 ∈ ℕ and let |𝐶⟩⊗𝑘 , |𝐷⟩⊗𝑘 be states on registers 𝖠[𝑘] and
𝖡[𝑘] respectively. Suppose there is a quantum circuit 𝑅 acting on register 𝖡[𝑘] such that

F
(︁
(id⊗𝑅)(|𝐶⟩⟨𝐶|⊗𝑘), |𝐷⟩⟨𝐷|⊗𝑘

)︁
≥ 𝜈 .

Then for all 𝑇 ∈ ℕ there exists a quantum circuit 𝑀 which acts on register 𝖡 such that

F
(︁
(id⊗𝑀)(|𝐶⟩⟨𝐶|), |𝐷⟩⟨𝐷|

)︁
≥ 1−

(︁
2(1− 𝜈)𝑇 +

32𝑇√
𝑘

)︁
.

and the size of 𝑀 is at most poly(𝑇, |𝑅|, |𝐶|, |𝐷|) where |𝑅|, |𝐶|, |𝐷| denote the sizes of circuits
𝑅,𝐶,𝐷. Furthermore, if 𝑅 is an instance of a uniformly generated quantum algorithm, so is 𝑀 .

Before proving Lemma 6.9, we first show how it implies Theorem 6.8.
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Proof of Theorem 6.8. We present the proof for the uniform class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯; the proof for the
non-uniform class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒 is entirely analogous.

As mentioned the “only if” direction is trivial, and we focus on the “if” direction. That is,
we assume that DistUhlmann1−𝜇 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯1−𝜉 for all negligible functions 𝜇(𝑛), where
𝜉(𝑛) = 𝑛−1/16, and we aim to show that DistUhlmann1−𝜇 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 for all negligible
functions 𝜇(𝑛).

Fix a negligible function 𝜖(𝑛) and a polynomial 𝑞(𝑛). Define the functions

𝑘(𝑛) := (𝑛 𝑞(𝑛))8 𝛿(𝑛) := 𝑘(𝑛)𝜖(𝑛) 𝑇 (𝑛) = 2𝑞(𝑛)/𝜉(𝑛𝑘(𝑛))2 .

Note that 𝛿(𝑛) is also a negligible function. Therefore by assumption DistUhlmann1−𝛿 ⊆
DistUhlmann(1−𝜖)𝑘 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯1−𝜉 there exists a uniform polynomial-time algorithm 𝑅 =
(𝑅𝑥)𝑥 that implements DistUhlmann1−𝛿 with average-case error 1− 𝜉.

Fix a Uhlmann1−𝜖 instance 𝑥 = (1𝑛, 𝐶,𝐷), and let 𝑘 = 𝑘(𝑛), 𝛿 = 𝛿(𝑛), 𝑇 = 𝑇 (𝑛). We write
𝑥𝑘 to denote the parallel repeated instance (1𝑛𝑘, 𝐶⊗𝑘, 𝐷⊗𝑘). Note 𝑥𝑘 is a valid Uhlmann(1−𝜖)𝑘
instance. By the second part of Proposition 5.8, it holds that

F
(︁
(id⊗𝑅𝑥𝑘)(|𝐶⟩⟨𝐶|

⊗𝑘), |𝐷⟩⟨𝐷|⊗𝑘
)︁
≥
(︁
𝜉(𝑛𝑘)− 5

√︀
𝛿(𝑛𝑘)

)︁2
≥ 𝜉(𝑛𝑘)2 − 10

√︀
𝛿(𝑛𝑘) . (6.4)

Define 𝜈 = 𝜉(𝑛𝑘)2 − 10
√︀
𝛿(𝑛𝑘). Since 𝛿 is a negligible function, for sufficiently large 𝑛 the

quantity 𝜈 is lower bounded by 𝜉(𝑛𝑘)2/2. We now invoke Lemma 6.9: there exists a polynomial-
time quantum algorithm 𝑀 = (𝑀𝑥)𝑥 such that for all valid Uhlmann1−𝜖 instances 𝑥 = (1𝑛, 𝐶,𝐷),

F
(︁
(id⊗𝑀𝑥)(|𝐶⟩⟨𝐶|), |𝐷⟩⟨𝐷|

)︁
≥ 1−

(︁
2(1− 𝜈(𝑛))𝑇 (𝑛) + 32𝑇 (𝑛)√︀

𝑘(𝑛)

)︁
.

By our choice of 𝑘, 𝜈, 𝑇 , we get

2(1− 𝜈)𝑇 +
32𝑇√
𝑘
≤ 2(1− 𝜉(𝑛𝑘)2/2)2𝑞(𝑛)/𝜉(𝑛𝑘)2 + 64𝑞(𝑛)

𝑛4 𝜉(𝑛𝑘)2 𝑞(𝑛)4

≤ 2𝑒−𝑞(𝑛) +
64 (𝑛𝑘)1/8

𝑛4 𝑞(𝑛)3
≤ 𝑂

(︁ 1

𝑞(𝑛)2

)︁
,

where in the second line we used the assumption that 1/𝜉(𝑛𝑘) ≤ (𝑛𝑘)1/16. Thus we have argued
that

F((id⊗𝑀𝑥) |𝐶⟩⟨𝐶| , |𝐷⟩⟨𝐷|) ≥ 1−𝑂(1/𝑞(𝑛)2) ≥ 1− 𝜖(𝑛)−𝑂(1/𝑞(𝑛)2) .

Using the first part of Proposition 5.8, we get that the algorithm 𝑀𝑥 implements DistUhlmann1−𝜖
with average-case error 𝑂(

√︀
𝜖(𝑛)) + 𝑂(1/𝑞(𝑛)) ≤ 𝑂(1/𝑞(𝑛)) for sufficiently large 𝑛. Since this is

true for all polynomials 𝑞(𝑛) and all Uhlmann1−𝜖 instances 𝑥 = (1𝑛, 𝐶,𝐷), this establishes that
DistUhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯, as desired.

Proof of Lemma 6.9. First, some notation: we write 𝖠−𝑖,𝖡−𝑖 to denote 𝖠[𝑘] without 𝖠𝑖 and 𝖡[𝑘]

without 𝖡𝑖, respectively.
The circuit 𝑅 is not necessarily unitary as it may trace out or measure qubits, so let �̃� denote the

unitary extension of 𝑅, i.e., �̃� is the circuit given by 𝑅 except all the measurements are performed
coherently using ancilla qubits. Note that the size of �̃� is at most polynomial in the size of 𝑅. The
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unitary �̃� acts on registers 𝖡[𝑘]𝖦 where 𝖡[𝑘] is the second register of the state |𝐶⟩⊗𝑘 and 𝖦 is an
ancilla register.

The algorithm 𝑀 is presented in Algorithm 2. The algorithm depends on the parameters 𝑘, 𝑇 ,
and makes calls to the circuits 𝐶,𝐷,𝑅. Thus the claim about the circuit size and uniformity of 𝑀
follow from inspection.

Algorithm 2. Algorithm 𝑀 that maps |𝐶⟩ to |𝐷⟩ with small error, given that 𝑅 maps |𝐶⟩⊗𝑘
to |𝐷⟩⊗𝑘 with large error.

Input: Quantum register 𝖡.

1. Sample 𝑖 uniformly from [𝑘].

2. Initialize registers 𝖠−𝑖𝖡−𝑖 in the state |𝐶⟩⊗𝑘−1 and register 𝖦 in the all-zero state.

3. Relabel the 𝖡 register as 𝖡𝑖.

4. For 𝑡 ∈ [𝑇 ]:

(a) Perform the following measurement, which we will call 𝑃−𝑖:

i. Apply (𝐶⊗𝑘−1)† to registers 𝖠−𝑖𝖡−𝑖.
ii. Measure whether the 𝖠−𝑖𝖡−𝑖 registers are in the all-zeroes state.
iii. Apply 𝐶⊗𝑘−1.

(b) Perform the following measurement, which we will call 𝑄−𝑖:

i. Apply �̃� to registers 𝖡[𝑘]𝖦.
ii. Apply (𝐷⊗𝑘−1)† to registers 𝖠−𝑖𝖡−𝑖.
iii. Measure whether the 𝖠−𝑖𝖡−𝑖 registers are in the all-zeroes state.
iv. Apply 𝐷⊗𝑘−1.
v. Apply �̃�† to registers 𝖡[𝑘]𝖦.

(c) If the 𝑄−𝑖 outcome succeeds (i.e., all-zeroes are measured in step (iii)), then exit
loop.

5. Apply �̃� to registers 𝖡[𝑘]𝖦, and output register 𝖡𝑖.

Define the projectors

𝑃 := |𝐶⟩⟨𝐶|⊗𝑘𝖠[𝑘]𝖡[𝑘]
⊗ |0⟩⟨0|𝖦 and 𝑄 := �̃�†

(︁
|𝐷⟩⟨𝐷|⊗𝑘𝖠[𝑘]𝖡[𝑘]

⊗ id𝖦

)︁
�̃� .

The assumption that 𝑅 maps |𝐶⟩⊗𝑘 to have fidelity at least 𝜈 with |𝐷⟩⊗𝑘 can be rewritten as
Tr(𝑃𝑄) ≥ 𝜈. For simplicity assume that 𝜈 = Tr(𝑃𝑄) exactly. Let

|𝑣⟩ := |𝐶⟩⊗𝑘 ⊗ |0⟩ , |𝑤⟩ := 𝑄 |𝑣⟩ /
√
𝜈 .

The two-dimensional subspace spanned by |𝑣⟩ and |𝑤⟩ defines two additional vectors |𝑣⊥⟩ , |𝑤⊥⟩
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where

|𝑣⟩ =
√
𝜈 |𝑤⟩+

√
1− 𝜈 |𝑤⊥⟩ , |𝑣⊥⟩ =

√
1− 𝜈 |𝑤⟩ −

√
𝜈 |𝑤⊥⟩

|𝑤⟩ =
√
𝜈 |𝑣⟩+

√
1− 𝜈 |𝑣⊥⟩ , |𝑤⊥⟩ =

√
1− 𝜈 |𝑣⟩ −

√
𝜈 |𝑣⊥⟩ .

Furthermore, this two-dimensional subspace is invariant under the action of 𝑃 , 𝑄, as |𝑣⟩ = 𝑃 |𝑤⟩ /
√
𝜈

and |𝑤⟩ = 𝑄 |𝑣⟩ /
√
𝜈. We remark that this is a special case of Jordan’s Lemma [Bha13, Chapter

VII].
Now for every 𝑖 ∈ [𝑘] define the projectors

𝑃−𝑖 = |𝐶⟩⟨𝐶|⊗𝑘−1 ⊗ id𝖠𝑖𝖡𝑖 ⊗ |0⟩⟨0|𝖦 and 𝑄−𝑖 = �̃�†
(︁
|𝐷⟩⟨𝐷|⊗𝑘−1 ⊗ id𝖠𝑖𝖡𝑖𝖦

)︁
�̃� .

Note that 𝑃−𝑖, 𝑄−𝑖 do not act on registers 𝖠𝑖𝖡𝑖, and that 𝑃−𝑖𝑃 = 𝑃𝑃−𝑖 = 𝑃 and 𝑄−𝑖𝑄 = 𝑄𝑄−𝑖 =
𝑄.

We now argue that the operators 𝑃−𝑖, 𝑄−𝑖 are not far from 𝑃,𝑄 for a randomly chosen 𝑖.

Claim 6.10. For all unit length |𝜓⟩,

𝔼
𝑖

⃦⃦⃦
(𝑃 − 𝑃−𝑖) |𝜓⟩

⃦⃦⃦2
≤ 1

𝑘
and 𝔼

𝑖

⃦⃦⃦
(𝑄−𝑄−𝑖) |𝜓⟩

⃦⃦⃦2
≤ 1

𝑘

where the expectation is over a uniformly random 𝑖 ∈ [𝑘].

Proof. Note that 𝔼𝑖 𝑃−𝑖 = (1− 1
𝑘 )𝑃 . We now calculate:

𝔼
𝑖

⃦⃦⃦
(𝑃 − 𝑃−𝑖) |𝜓⟩

⃦⃦⃦2
= 𝔼

𝑖
⟨𝜓| (𝑃 − 𝑃−𝑖)(𝑃 − 𝑃−𝑖) |𝜓⟩ = 𝔼

𝑖
⟨𝜓|𝑃−𝑖 |𝜓⟩ − ⟨𝜓|𝑃 |𝜓⟩

= ⟨𝜓| (𝔼
𝑖
𝑃−𝑖 − 𝑃 ) |𝜓⟩ ≤

⃦⃦⃦
𝔼
𝑖
𝑃−𝑖 − 𝑃

⃦⃦⃦
∞

=

⃦⃦⃦⃦
1

𝑘
𝑃

⃦⃦⃦⃦
∞

=
1

𝑘
.

The proof for 𝑄’s proceeds analogously.

Claim 6.11. For all |𝜓⟩ ∈ span{|𝑣⟩ , |𝑤⟩}, we have

𝔼
𝑖
max

{︁⃦⃦⃦
(𝑃 − 𝑃−𝑖) |𝜓⟩

⃦⃦⃦2
,
⃦⃦⃦
(𝑄−𝑄−𝑖) |𝜓⟩

⃦⃦⃦2}︁
≤ 4

𝑘
.

Proof. Claim 6.10 implies

𝔼
𝑖

⃦⃦⃦
(𝑃 − 𝑃−𝑖) |𝑣⟩

⃦⃦⃦2
≤ 1

𝑘
and 𝔼

𝑖

⃦⃦⃦
(𝑃 − 𝑃−𝑖) |𝑣⊥⟩

⃦⃦⃦2
≤ 1

𝑘
.

Now a unit vector |𝜓⟩ in the span of |𝑣⟩ , |𝑤⟩ can be written as |𝜓⟩ = 𝛼 |𝑣⟩+ 𝛽 |𝑣⊥⟩, so

𝔼
𝑖

⃦⃦⃦
(𝑃 − 𝑃−𝑖) |𝜓⟩

⃦⃦⃦2
≤ 2𝔼

𝑖

(︁
|𝛼|2

⃦⃦⃦
(𝑃 − 𝑃−𝑖) |𝑣⟩

⃦⃦⃦2
+ |𝛽|2

⃦⃦⃦
(𝑃 − 𝑃−𝑖) |𝑣⊥⟩

⃦⃦⃦2)︁
≤ 2

𝑘

where we used that |𝛼|2 + |𝛽|2 = 1. The proof for the 𝑄’s is analogous.
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We now analyze the performance of Algorithm 2. Let 𝑉𝑖 denote the unitary corresponding to
the “for loop” in Algorithm 2, i.e., step 4, conditioned on sampling 𝑖 in step 1. The algorithm is
described in terms of measurements, but we can imagine coherently performing the measurements
and storing the outcome in an ancilla qubit. In particular, we describe 𝑉𝑖 as a sequence of alternating
unitary operations. We introduce the following labels for registers.

1. Let 𝖲 denote 𝖠[𝑘]𝖡[𝑘]𝖦.

2. Let 𝖧[𝑇 ] denote ancilla qubits that store the outcomes of the 𝑃 measurements.

3. Let 𝖥 denote an ancilla qubit that indicates whether a 𝑄 measurement succeeded.

The ancilla qubits all start in the zero state. Define the following unitary transformations:

1. For all 𝑗 ∈ [𝑇 ], define

𝐴𝑖𝑗 = |0⟩⟨0|𝖥 ⊗
[︁
𝑃−𝑖 ⊗𝑋𝖧𝑗 + (𝐼 − 𝑃−𝑖)⊗ id𝖧𝑗

]︁
+ |1⟩⟨1|𝖥 ⊗ id

In other words, 𝐴𝑖𝑗 performs the 𝑗’th 𝑃−𝑖 measurement: it checks if the 𝖥 qubit is set to |1⟩.
If so, it does nothing. Otherwise, it performs the 𝑃−𝑖 measurement and flips the qubit in
register 𝖧𝑗 .

2. We define
𝐵𝑖 = |0⟩⟨0|𝖥 ⊗ (id−𝑄−𝑖) + |1⟩⟨0|𝖥 ⊗𝑄−𝑖 + |1⟩⟨1|𝖥 ⊗ id .

In other words, 𝐵𝑖 checks if the 𝖥 qubit is set to |1⟩. If so, it does nothing. Otherwise, it
performs the 𝑄−𝑖 measurement and if the 𝑄−𝑖 outcome occurs, and flips 𝖥 qubit.

Thus the state of the algorithm 𝑉𝑖 after the 𝑗’th step is

|𝜙𝑖𝑗⟩ := 𝐵𝑖𝐴𝑖𝑗𝐵𝑖𝐴𝑖,𝑗−1 · · ·𝐵𝑖𝐴𝑖1 |𝑣⟩ |0 · · · 0⟩𝖲𝖥𝖧1···𝖧𝑇 .

Clearly 𝑉𝑖 is computable by a polynomial-size circuit.
We now consider another algorithm 𝑉 which is the same as 𝑉𝑖 except instead of performing the

𝑃−𝑖, 𝑄−𝑖 measurements, performs 𝑃,𝑄 instead. Define the unitary matrices 𝐴1, . . . , 𝐴𝑇 and �̂� in
the same way except they perform the 𝑃 and 𝑄 measurements instead of 𝑃−𝑖 and 𝑄−𝑖. Thus the
state of the algorithm 𝑉 after the 𝑗’th step is

|𝜙𝑗⟩ := �̂�𝐴𝑗�̂�𝐴𝑗−1 · · · �̂�𝐴1 |𝑣⟩ |0 · · · 0⟩𝖲𝖥𝖧1···𝖧𝑇 .

Define |𝜙0⟩ := |𝑣⟩ |0 · · · 0⟩. We will argue that |𝜙𝑖𝑗⟩ is not far from |𝜙𝑗⟩ on average over a randomly
chosen index 𝑖.

Claim 6.12. For all 𝑗 = 0, ..., 𝑇 , the 𝖲 register of |𝜙𝑗⟩ is supported on the subspace span{|𝑣⟩ , |𝑤⟩}.

Proof. We prove this by induction. This holds for 𝑗 = 0 because the initial state is |𝑣⟩ |0 · · · 0⟩.
Assume for induction that the statement is true up to 𝑗 − 1. Note that

|𝜙𝑗⟩ = �̂�𝐴𝑗 |𝜙𝑗−1⟩ .

The operator 𝐴𝑗 either performs the 𝑃 measurement on register 𝖲 or does nothing; the post-
measurement states remain inside the two-dimensional subspace span{|𝑣⟩ , |𝑤⟩} because this sub-
space is invariant under the action of 𝑃 . Same with the �̂� operator, which either performs the 𝑄
measurement or does nothing.
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Claim 6.13. For all 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑇 ] we have

𝔼
𝑖

⃦⃦⃦
(𝐵𝑖𝐴𝑖𝑗 − �̂�𝐴𝑗) |𝜙𝑗−1⟩

⃦⃦⃦
≤ 8√

𝑘
.

Proof. By triangle inequality,⃦⃦⃦
(𝐵𝑖𝐴𝑖𝑗 − �̂�𝐴𝑗) |𝜙𝑗−1⟩

⃦⃦⃦
≤
⃦⃦⃦
𝐵𝑖(𝐴𝑖𝑗 −𝐴𝑗) |𝜙𝑗−1⟩

⃦⃦⃦
+
⃦⃦⃦
(𝐵𝑖 − �̂�)𝐴𝑗 |𝜙𝑗−1⟩

⃦⃦⃦
=
⃦⃦⃦
(𝐴𝑖𝑗 −𝐴𝑗) |𝜙𝑗−1⟩

⃦⃦⃦
+
⃦⃦⃦
(𝐵𝑖 − �̂�)𝐴𝑗 |𝜙𝑗−1⟩

⃦⃦⃦
,

where in the second line we used that 𝐵𝑖 is unitary. We analyze each term separately. By triangle
inequality again,⃦⃦⃦
(𝐴𝑖𝑗 −𝐴𝑗) |𝜙𝑗−1⟩

⃦⃦⃦
≤
⃦⃦⃦
|0⟩⟨0|𝖥 ⊗ (𝑃−𝑖 − 𝑃 )⊗𝑋𝖧𝑗 |𝜙𝑗−1⟩

⃦⃦⃦
+
⃦⃦⃦
|0⟩⟨0|𝖥 ⊗ (𝑃−𝑖 − 𝑃 )⊗ id𝖧𝑗 |𝜙𝑗−1⟩

⃦⃦⃦
= 2
⃦⃦⃦
(𝑃−𝑖 − 𝑃 ) |𝜙𝑗−1⟩

⃦⃦⃦
.

Similarly we have ⃦⃦⃦
(𝐵𝑖 − �̂�)𝐴𝑗 |𝜙𝑗−1⟩

⃦⃦⃦
≤ 2
⃦⃦⃦
(𝑄−𝑖 −𝑄)𝐴𝑗 |𝜙𝑗−1⟩

⃦⃦⃦
.

Averaging over 𝑖 ∈ [𝑘] we get

𝔼
𝑖

⃦⃦⃦
(𝐵𝑖𝐴𝑖𝑗 − �̂�𝐴𝑗) |𝜙𝑗−1⟩

⃦⃦⃦
≤ 2
(︁
𝔼
𝑖

⃦⃦⃦
(𝑃−𝑖 − 𝑃 ) |𝜙𝑗−1⟩

⃦⃦⃦
+
⃦⃦⃦
(𝑄−𝑖 −𝑄)𝐴𝑗 |𝜙𝑗−1⟩

⃦⃦⃦)︁
≤ 2
(︁√︂

𝔼
𝑖

⃦⃦⃦
(𝑃−𝑖 − 𝑃 ) |𝜙𝑗−1⟩

⃦⃦⃦2
+

√︂
𝔼
𝑖

⃦⃦⃦
(𝑄−𝑖 −𝑄)𝐴𝑗 |𝜙𝑗−1⟩

⃦⃦⃦2)︁
≤ 4

√︂
4

𝑘
=

8√
𝑘

where in the second line we used Jensen’s inequality, and in the third line we used Claim 6.11 with the
fact that the 𝖲 registers of |𝜙𝑗−1⟩ and 𝐴𝑗 |𝜙𝑗−1⟩ are supported on the subspace span{|𝑣⟩ , |𝑤⟩}.

Putting everything together, we have by the triangle inequality

𝔼
𝑖

⃦⃦⃦
|𝜙𝑖𝑇 ⟩ − |𝜙𝑇 ⟩

⃦⃦⃦
≤ 𝔼

𝑖

𝑇∑︁
𝑗=1

⃦⃦⃦
(𝐵𝑖𝐴𝑖𝑗 − �̂�𝐴𝑗) |𝜙𝑗−1⟩

⃦⃦⃦
≤ 8𝑇/

√
𝑘 . (6.5)

Now we analyze the behavior of the 𝑉 algorithm; by what we just argued, the behavior of the
𝑉𝑖 algorithm is similar on average over 𝑖 (assuming that 𝑇 is sufficiently smaller than

√
𝑘).

Claim 6.14.
⃦⃦⃦
(id−𝑄) |𝜙𝑇 ⟩

⃦⃦⃦2
≤ (1− 𝜈)𝑇 .

Proof. Since the projector id − 𝑄 does not act on the ancilla 𝖧[𝑇 ] registers, the quantity
⃦⃦⃦
(id −

𝑄) |𝜙𝑇 ⟩
⃦⃦⃦2

is the probability that running the algorithm 𝑉 with incoherent 𝑃,𝑄 measurements
never yields a 𝑄 outcome at any of the 𝑇 iterations.
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Since the initial state of the algorithm is |𝑣⟩ |0 . . . 0⟩, and the algorithm simply alternates between
performing the {𝑃, id−𝑃} and {𝑄, id−𝑄} projective measurements, no matter what the measure-
ment outcomes are, the register 𝖲 of the post-measurement state is always either |𝑣⟩ , |𝑤⟩ , |𝑣⊥⟩ , |𝑤⊥⟩.
If register 𝖲 is ever in the state |𝑤⟩, then that means the 𝑄 outcome must have occurred, and the

algorithm stops. Thus the quantity
⃦⃦⃦
(id − 𝑄) |𝜙𝑇 ⟩

⃦⃦⃦2
is the probability that the first iteration re-

sulted in register 𝖲 being in the state |𝑤⊥⟩, and for every iteration thereafter started in |𝑤⊥⟩ and
ended in |𝑤⊥⟩.

The probability that the first iteration ends in the state |𝑤⊥⟩ is exactly 1−𝜈. In all the iterations
thereafter, conditioned on the starting state being |𝑤⊥⟩, performing the {𝑃, id − 𝑃} measurement
followed by the {𝑄, id − 𝑄} measurement yields the outcome |𝑤⊥⟩ state again with probability
𝜈2 + (1− 𝜈)2. Thus we get⃦⃦⃦

(id−𝑄) |𝜙𝑇 ⟩
⃦⃦⃦2

= (1− 𝜈)(𝜈2 + (1− 𝜈)2)𝑇−1 ≤ (1− 𝜈)𝑇

as desired.

We now bound the performance of 𝑀 . We have that

F((id𝖠⊗𝑀) |𝐶⟩⟨𝐶| , |𝐷⟩⟨𝐷|) = ⟨𝐷| (id𝖠⊗𝑀)(|𝐶⟩⟨𝐶|) |𝐷⟩ = 1−Tr
(︁
(id−|𝐷⟩⟨𝐷|)(id𝖠⊗𝑀)(|𝐶⟩⟨𝐶|)

)︁
.

Note that we can write the output of 𝑀 when given as input register 𝖡 of |𝐶⟩ as

(id𝖠 ⊗𝑀)(|𝐶⟩⟨𝐶|) = 𝔼
𝑖
Tr𝖡𝑖

(︁
�̃�𝑉𝑖(|𝐶⟩⟨𝐶|⊗𝑘 ⊗ |0 . . . 0⟩⟨0 . . . 0|)𝑉 †𝑖 �̃�

†
)︁

where Tr𝖡𝑖(·) denotes the partial trace of all registers except for 𝖡𝑖, and |0 . . . 0⟩ denotes the ancilla
qubits in registers 𝖦,𝖥,𝖧[𝑇 ]. Now observe that 𝑉𝑖 |𝐶⟩⊗𝑘 |0 . . . 0⟩ is nothing but |𝜙𝑖𝑇 ⟩. Therefore

Tr
(︁
(id− |𝐷⟩⟨𝐷|)(id𝖠 ⊗𝑀)(|𝐶⟩⟨𝐶|)

)︁
= 𝔼

𝑖

⃦⃦⃦
(id− |𝐷⟩⟨𝐷|)𝖠𝑖𝖡𝑖�̃�𝑥𝑘 |𝜙𝑖𝑇 ⟩

⃦⃦⃦2
≤ 2
⃦⃦⃦
(id−𝑄) |𝜙𝑇 ⟩

⃦⃦⃦2
+ 2𝔼

𝑖

⃦⃦⃦
|𝜙𝑖𝑇 ⟩ − |𝜙𝑇 ⟩

⃦⃦⃦2
≤ 2(1− 𝜈)𝑇 + 4𝔼

𝑖

⃦⃦⃦
|𝜙𝑖𝑇 ⟩ − |𝜙𝑇 ⟩

⃦⃦⃦
≤ 2(1− 𝜈)𝑇 +

32𝑇√
𝑘
. (6.6)

In the second line we used the triangle inequality and the fact that⃦⃦⃦
(id− |𝐷⟩⟨𝐷|)𝖠𝑖𝖡𝑖�̃� |𝜙𝑖𝑇 ⟩

⃦⃦⃦2
=
⃦⃦⃦
�̃�†(id− |𝐷⟩⟨𝐷|)𝖠𝑖𝖡𝑖�̃� |𝜙𝑖𝑇 ⟩

⃦⃦⃦2
because �̃� is unitary, and that 𝑄 ≤ �̃�† |𝐷⟩⟨𝐷|𝖠𝑖𝖡𝑖 �̃� in the positive semidefinite ordering. The

third line uses Claim 6.14 and the fact that
⃦⃦⃦
|𝜙𝑖𝑇 ⟩ − |𝜙𝑇 ⟩

⃦⃦⃦2
≤ 2

⃦⃦⃦
|𝜙𝑖𝑇 ⟩ − |𝜙𝑇 ⟩

⃦⃦⃦
. The fourth line

uses Equation (6.5).
This concludes the proof of Lemma 6.9.
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6.3 The padding trick

We now turn to the complexity of DistUhlmann𝜅 when 𝜅 is bounded away from 0 and 1 by some
inverse-polynomial quantity. Note that for all 0 ≤ 𝜅1 ≤ 𝜅2 ≤ 1, we have that all valid instances of
Uhlmann𝜅2 are valid instances of Uhlmann𝜅1 but not vice versa (a similar statement holds for
SuccinctUhlmann). Thus, implementing general Uhlmann𝜅1 transformations may potentially
be more difficult than implementing Uhlmann𝜅2 transformations. Furthermore, it is no longer
apparent that there is a zero-knowledge protocol for, say, DistUhlmann1/2. Thus it is not clear
how the complexities of Uhlmann𝜅1 and Uhlmann𝜅2 relate to each other for different 𝜅1, 𝜅2.

We present a simple padding trick which shows that as long as 𝜅1, 𝜅2 are bounded by at least some
inverse polynomial from either 0 or 1, the complexities of DistUhlmann𝜅1 and DistUhlmann𝜅2
are equivalent under polynomial-time reductions.

Lemma 6.15 (Padding trick). Let 0 ≤ 𝜅1 ≤ 𝜅2 ≤ 1 and let 𝐶,𝐷 be circuits on 2𝑛 qubits such
that F(𝜌, 𝜎) ≥ 𝜅1 where 𝜌, 𝜎 are the reduced density matrices of |𝐶⟩ = 𝐶 |02𝑛⟩ , |𝐷⟩ = 𝐷 |02𝑛⟩,
respectively, on the first 𝑛 qubits. Let 0 < 𝛼 ≤ (1 − 𝜅2)/(1 − 𝜅1). Define the following states
|𝐸⟩ , |𝐹 ⟩ on 2(𝑛+ 1) qubits where

|𝐸⟩ =
√
𝛼 |0⟩ |𝐶⟩ |0⟩+

√
1− 𝛼 |12(𝑛+1)⟩

|𝐹 ⟩ =
√
𝛼 |0⟩ |𝐷⟩ |0⟩+

√
1− 𝛼 |12(𝑛+1)⟩ .

Suppose that the state
√
𝛼 |0⟩ +

√
1− 𝛼 |1⟩ can be prepared using a circuit of size 𝑠. Then the

following hold:

1. |𝐸⟩, |𝐹 ⟩ can be computed by circuits 𝐸,𝐹 of size 𝑂(|𝐶|+ |𝐷|+ 𝑠);

2. F(𝜏, 𝜇) ≥ 𝜅2 where 𝜏, 𝜇 are the reduced density matrices of |𝐸⟩ , |𝐹 ⟩ on the first 𝑛+ 1 qubits;

3. The canonical (𝑛+ 1)-qubit Uhlmann isometry 𝑉 for (|𝐸⟩ , |𝐹 ⟩) can be written as

𝑉 = 𝑈 ⊗ |0⟩⟨0|+ id⊗ |1⟩⟨1|

where 𝑈 is the 𝑛-qubit canonical Uhlmann isometry for (|𝐶⟩ , |𝐷⟩).

Proof. We prove the first item. To compute the state |𝐸⟩, consider the circuit 𝐸 on 2(𝑛+1) qubits
that does the following:

1. Initialize the first qubit in the state
√
𝛼 |0⟩+

√
1− 𝛼 |1⟩.

2. Apply a CNOT from the first qubit to the last qubit.

3. Controlled on the first qubit being |0⟩, run the 𝑛-qubit circuit 𝐶 on qubits 2 through 𝑛+ 1.

4. Controlled on the first qubit being |1⟩, apply a bitflip operator to qubits 2 through 𝑛+ 1.

Clearly the size of 𝐸 is 𝑂(|𝐶|+𝑠) where |𝐶| denotes the size of circuit 𝐶 where by assumption there
is a circuit of size 𝑠 to initialize the first qubit. An analogous construction holds for |𝐹 ⟩.

For the second item, we have

𝜏 = 𝛼 |0⟩⟨0| ⊗ 𝜌+ (1− 𝛼) |1⟩⟨1| ⊗ |1𝑛⟩⟨1𝑛|
𝜇 = 𝛼 |0⟩⟨0| ⊗ 𝜎 + (1− 𝛼) |1⟩⟨1| ⊗ |1𝑛⟩⟨1𝑛| .
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The fidelity between 𝜏 and 𝜇 can be bounded as F(𝜏, 𝜇) = 𝛼F(𝜌, 𝜎) + 1− 𝛼 ≥ 𝛼𝜅1 + 1− 𝛼 ≥ 𝜅2.
For the third item, recall that the canonical Uhlmann isometry (where we have set the cutoff 𝜂

to 0) for (|𝐸⟩ , |𝐹 ⟩) is defined as
𝑉 = sgn(Tr𝖠′(|𝐸⟩⟨𝐹 |))

where 𝖠′ denotes the first 𝑛+ 1 qubits of |𝐸⟩ , |𝐹 ⟩. This is equal to

sgn
(︁
𝛼Tr𝖠(|𝐶⟩⟨𝐷|)⊗ |0⟩⟨0|+ (1− 𝛼) |1𝑛⟩⟨1𝑛| ⊗ |1⟩⟨1|

)︁
= sgn(Tr𝖠(|𝐶⟩⟨𝐷|))⊗ |0⟩⟨0|+ |1𝑛⟩⟨1𝑛| ⊗ |1⟩⟨1|

where 𝖠 denotes the first 𝑛 qubits of |𝐶⟩ , |𝐷⟩. To conclude, note that sgn(Tr𝖠(|𝐶⟩⟨𝐷|)) is the
canonical Uhlmann isometry for (|𝐶⟩ , |𝐷⟩).

Lemma 6.16 (Average-case reductions for DistUhlmann𝜅 for different fidelities 𝜅). Let 𝜅 :
ℕ → [0, 1] be such that 1/𝑝(𝑛) ≤ 𝜅(𝑛) ≤ 1 − 1/𝑝(𝑛) for all 𝑛 for some polynomial 𝑝(𝑛). Then
DistUhlmann𝜅 polynomial-time reduces to DistUhlmann1−1/𝑝.

Proof. For every valid Uhlmann𝜅 instance 𝑥 = (1𝑛, 𝐶,𝐷), let 𝑦 = (12(𝑛+1), 𝐸, 𝐹 ) denote the valid
Uhlmann1−1/𝑝 instance given by the padding trick (Lemma 6.15), where 𝛼(𝑛) = 1/𝑝(𝑛). The state√︀
𝛼(𝑛) |0⟩ +

√︀
1− 𝛼(𝑛) |1⟩ can be prepared with circuits of size 𝑂(log 𝑛) by the Solovay-Kitaev

theorem, so by Lemma 6.15 𝐸 and 𝐹 are also polynomial-sized (in 𝑛) circuits. Furthermore, given
explicit descriptions of 𝐶,𝐷 one can efficiently compute explicit descriptions of 𝐸,𝐹 .

To prove the lemma, let 𝑞(𝑛) be an arbitrary polynomial. By Definition 3.21 we need to find
another polynomial 𝑟(𝑛) (which can depend on 𝑞(𝑛)) and a polynomial-time quantum query algo-
rithm 𝐴* such that any 1/𝑟(𝑛)-error average case instantiation (see Definition 3.20) of 𝐴DistUhlmann

1−1/𝑝
implements DistUhlmann1/𝑝 with average-case error 1/𝑞(𝑛).

We define 𝐴* = (𝐴*𝑥)𝑥 as follows. The circuit 𝐴*𝑥 takes as input an 𝑛-qubit register 𝖡 and
initializes a single-qubit register 𝖥 in the state |0⟩. It then applies the DistUhlmann1−1/𝑝 oracle
for instance 𝑦 (whose description can be efficiently computed from 𝑥) on registers 𝖥𝖡 and outputs
the result.

To show that this implements DistUhlmann1/𝑝, let 𝑟(𝑛) = 𝑝(𝑛)𝑞(𝑛), and let 𝐴DistUhlmann1−1/𝑝

denote a 1/𝑟(𝑛)-error average-case instantiation. Concretely, let 𝑉𝑦 denote the (exact) Uhlmann
partial isometry for instance 𝑦 and let 𝐻 = (𝐻𝑦)𝑦 denote a quantum algorithm that im-
plements DistUhlmann1−1/𝑝 with average-case error 1/𝑟(𝑛) and is used to instantiate the
DistUhlmann1−1/𝑝-oracle. This means there is a channel completion Φ𝑦 of 𝑉𝑦 such that

td
(︁
(id⊗𝐻𝑦)(|𝐸⟩⟨𝐸|), (id⊗ Φ𝑦)(|𝐸⟩⟨𝐸|)

)︁
≤ 1

𝑟(|𝑦|)
.

By the third item of Lemma 6.15, any channel completion Φ𝑦 of 𝑉𝑦 can be turned into a
channel completion of Ξ𝑥 of 𝑈𝑥, the Uhlmann𝜅 transformation corresponding to (|𝐶⟩ , |𝐷⟩). Define
Ξ𝑥(𝜌) := Tr𝖦(Φ𝑥(𝜌 ⊗ |0⟩⟨0|𝖦)) where 𝖦 denotes the last qubit. Let Π denote the support onto 𝑈𝑥.
Then Ξ𝑥(Π𝜌Π) = Tr𝖦(Φ𝑥(Π𝜌Π ⊗ |0⟩⟨0|𝖦)). But notice that the state Π𝜌Π ⊗ |0⟩⟨0| is contained in
the support of 𝑉𝑦; therefore

Tr𝖦(Φ𝑥(Π𝜌Π⊗ |0⟩⟨0|)) = Tr𝖦

(︁
𝑉𝑦(Π𝜌Π⊗ |0⟩⟨0|)𝑉 †𝑦

)︁
= 𝑈𝑥Π𝜌Π𝑈

†
𝑥
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where we used the expression for 𝑉𝑦 given by Lemma 6.15. Thus we can evaluate the performance
of the instantiation 𝐴DistUhlmann1−1/𝑝 on the input |𝐶⟩:

td
(︁
(id⊗𝐴DistUhlmann1−1/𝑝

𝑥 )(|𝐶⟩⟨𝐶|), (id⊗ Ξ𝑥)(|𝐶⟩⟨𝐶|)
)︁

= td
(︁
(id⊗𝐻𝑦)(|0⟩⟨0| ⊗ |𝐶⟩⟨𝐶| ⊗ |0⟩⟨0|), (id⊗ Φ𝑦)(|0⟩⟨0| ⊗ |𝐶⟩⟨𝐶|)⊗ |0⟩⟨0|

)︁
=

1

𝛼(𝑛)
td
(︁
(id⊗𝐻𝑦)(𝑃 |𝐸⟩⟨𝐸|𝑃 †), (id⊗ Φ𝑦)(𝑃 |𝐸⟩⟨𝐸|𝑃 †)

)︁
≤ 1

𝛼(𝑛)
td
(︁
(id⊗𝐻𝑦)(|𝐸⟩⟨𝐸|), (id⊗ Φ𝑦)(|𝐸⟩⟨𝐸|)

)︁
≤ 1

𝛼(𝑛)𝑟(𝑛)
=

1

𝑞(𝑛)
.

In the second line, we expanded the definitions of the query circuit 𝐴𝑥 and the channel completion
Ξ𝑥. In the third line, we define the projector 𝑃 = |0⟩⟨0| which acts on the first qubit so that
|0⟩ |𝐶⟩ |0⟩ = 1√

𝛼(𝑛)
𝑃 |𝐸⟩. In the fifth line we used the guarantees about the algorithm 𝐻𝑦 and our

definitions of 𝛼(𝑛), 𝑟(𝑛).

The padding trick allows us to make statements about Uhlmann𝜅 and DistUhlmann𝜅 for the
case where 𝜅 is at least an inverse polynomial. However, it may be that Uhlmann with negligible
𝜅 is more powerful than this. We leave this as an open question.

Open Problem 12. What is the power of Uhlmann𝜅 or DistUhlmann𝜅 for negligible 𝜅?

6.4 A polarization lemma for unitary zero knowledge?

Sahai and Vadhan [SV03] introduced the StatisticalDistance problem and showed that it is
complete for SZK. Here, an instance (1𝑛, 𝐶0, 𝐶1) of StatisticalDistance consists of a pair of
probability distributions (specified by circuits 𝐶0, 𝐶1 which produce samples from them) and the
problem is to decide whether the distributions are close (below the threshold 1/3) or far apart
(above the threshold 2/3) in terms of statistical distance. A key technical ingredient in their proof
system is the so-called “polarization lemma”. This is an efficient transformation that takes as input
a pair of probability distributions (specified by circuits) and produces a new pair of distributions
(in the form of new pair of circuits) with the following two guarantees:

• if the initial pair of distributions is statistically close (below the threshold 1/3), then the new
pair of distributions is statistically much closer (below the threshold 2−𝑛), whereas

• if the initial pair of distributions is statistically far apart (above the threshold 2/3), then new
pair is statistically much further apart (above the threshold 1− 2−𝑛).

This raises the following natural question: is it possible to obtain a “polarization lemma” in the
context of 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪 – the unitary analogue of (average-case) SZK? Specifically, we ask:

Open Problem 13. Is it possible to prove a “polarization lemma” which transforms an instance
of Uhlmann𝜅 for a small 𝜅, say 𝜅 = 1/2, into an instance of Uhlmann1−negl(𝑛) for some negligible
function, say 2−𝑛?
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Note that the latter problem is complete for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪, as we established in Theorem 6.7.
Watrous [Wat06] previously extended the polarization technique to density operators (specified by
quantum circuits which prepare them), and showed that QuantumStateDistinguishability is
complete for QSZK. This suggests that one could potentially apply a similar transformation as
in [Wat06, Theorem 1] in order to map an Uhlmann1/2 instance (1𝑛, 𝐶,𝐷) with F(𝜌, 𝜎) ≥ 1/2
(where 𝜌 and 𝜎 represent the mixed states induced by 𝐶,𝐷) into an Uhlmann1−2−𝑛 instance
(1𝑛, 𝐶, �̃�) with F(𝜌, �̃�) ≥ 1−2−𝑛. While such a circuit transformation is indeed possible via auxiliary
qubits (which encode random coins required for polarization), any auxiliary qubits must necessarily
be part of the purifying register on which the Uhlmann unitary is allowed to act upon. This
significantly complicates the matter when quantum input states are taken into account; for example,
it is unclear how to relate instances of DistUhlmann1/2 to valid instances of DistUhlmann1−2−𝑛 .
We leave the task of finding a polarization lemma for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪 – or to find evidence against
one – as an interesting open problem.

7 Structural Results about the Succinct Uhlmann Transformation
Problem

In this section, we show that the DistSuccinctUhlmann1 problem captures the complexity of
both 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 and 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯, which allows us to show that the two unitary com-
plexity classes are equal. Concretely, we show that DistSuccinctUhlmann1 is a complete
problem both for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 (Section 7.1) and for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 (Section 7.2), which im-
plies equality of the classes (Corollary 7.13). We then show additional structural results about
the succinct Uhlmann transformation problem, namely that SuccinctUhlmann is complete
for worst-case 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 for a suitable choice of cutoff parameter (Section 7.3), and how
DistSuccinctUhlmann relates to classical (worst-case) 𝖯𝖲𝖯𝖠𝖢𝖤 (Section 7.4).

7.1 Completeness for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯

7.1.1 DistSuccinctUhlmann1 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯

We begin with an 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 protocol for DistSuccinctUhlmann1, which we will use to show
that DistSuccinctUhlmann1 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯. The protocol closely mirrors that of Protocol 1
(the 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪 protocol for DistUhlmann), except that the circuits 𝐶 and 𝐷 are no longer
polynomial size since now they are specified succinctly. As a result, the polynomial time verifier can
no longer easily get copies of the 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤-state |𝐶⟩ and can no longer directly implement the
unitary 𝐷† to check that the Uhlmann transformation was applied correctly, which were important
steps in Protocol 1. For the first problem, we recall that 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 = 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 [MY23], so by
interacting with the prover, the verifier generate additional copies of the input state |𝐶⟩ (up to
arbitrary inverse polynomial error). To solve the second problem, we show that the verifier can
perform the measurement {|𝐷⟩⟨𝐷| , id − |𝐷⟩⟨𝐷|} on an arbitrary state with help from the prover.
We describe these in more detail next.

Interactive state synthesis. First we recall the main result of of [RY22], which shows that
there is an efficient interactive protocol to synthesize any state sequence (|𝜓𝑥⟩)𝑥 ∈ 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤.
We describe this result at a high level (for formal details see [RY22]): for every 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 state
sequence (|𝜓𝑥⟩)𝑥 there exists a polynomial-time quantum verifier 𝑉 = (𝑉𝑥)𝑥 such (a) there exists
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an honest prover 𝑃 * that is accepted by the verifier with probability 1 (completeness), and after
interacting with the honest prover the output register of the verifier is close to |𝜓𝑥⟩ to within 2−𝑛

in trace distance (honest closeness), and (b) for all provers 𝑃 that are accepted with probability
at least 1

2 (soundness), the output register of the verifier is close to |𝜓𝑥⟩ within some polynomial
1/𝑝(|𝑥|) in trace distance (closeness).

In what follows we will utilize as a subroutine the interactive state synthesis protocol for the
sequence Γ = (|𝐶⟩)𝐶 which is indexed by all succinct descriptions 𝐶 of a unitary circuit 𝐶 and |𝐶⟩
is the corresponding output state of the circuit (given all zeroes). It is straightforward to see that
Γ ∈ 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤, and therefore there is a 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol to synthesize Γ.

Interactive measurement synthesis. Next we describe another primitive which is a protocol
for interactive measurement synthesis. At a high level, this is a protocol where a verifier gets a
description of a measurement 𝑀 and an input register 𝖠 in an unknown state 𝜏 . The verifier
interacts with a prover and at the end outputs a measurement outcome bit 𝑏 as well as register 𝖠. If
the prover is accepted with sufficiently high probability, then (a) the measurement outcome bit 𝑏 is 1
with probability close to Tr(𝑀𝜏), and (b) conditioned on acceptance and 𝑏 = 1, the output register
𝖠 is close to being in the state 𝜏 |𝑀 , the post-measurement state13 of 𝜏 conditioned on measuring
𝑀 .

We show there is an efficient interactive measurement synthesis protocol for the case when the
measurement 𝑀 is a rank-one projector |𝜓⟩⟨𝜓| for some succinctly described state |𝜓⟩.

Lemma 7.1 (Approximate measurement protocol). Let Ψ = (|𝜓𝑥⟩)𝑥 be a 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 family of states.
Then for all polynomials 𝑝(𝑛), there exists a polynomial-time quantum verifier 𝑉 that takes as input
register 𝖠, and outputs an accept/reject flag, a measurement outcome bit 𝑏, and a register 𝖠 such
that the following properties hold:

1. (Completeness) There exists an honest prover 𝑃 * such that for all input states 𝜏𝖠

Pr[𝑉 (𝜏𝖠)⇆𝑃 * accepts] = 1 .

Furthermore, given input state |𝜓𝑥⟩⟨𝜓𝑥| in register 𝖠, the verifier outputs 𝑏 = 1 with over-
whelming probability:

Pr[𝑉 (|𝜓𝑥⟩⟨𝜓𝑥|𝖠)⇆𝑃 * outputs 1] ≥ 1− 2−|𝑥| .

2. (Soundness) For all input states 𝜏𝖠𝖱 (where 𝖱 is an arbitrary external register not touched by
the verifier or prover) and for all provers 𝑃 such that 𝑉 (𝜏𝖠𝖱)⇆𝑃 accepts with probability at
least 1/2, ⃒⃒⃒

Pr [𝑉 outputs 𝑏 = 1 | 𝑉 accepts]− Tr
(︁
|𝜓𝑥⟩⟨𝜓𝑥|𝖠 𝜏𝖠

)︁⃒⃒⃒
≤ 1

𝑝(|𝑥|)
,

where the events “outputs 𝑏 = 1” and “accepts” are with respect to the interaction 𝑉 (𝜏𝖠𝖱)⇆𝑃 .
If additionally Tr

(︁
|𝜓𝑥⟩⟨𝜓𝑥|𝖠 𝜏𝖠

)︁
≥ 1

2 , then the final state (𝜏𝑎𝑐𝑐)𝖠𝖱 at the end of the protocol
conditioned on acceptance and conditioned on measurement outcome bit 𝑏 = 1 satisfies

td(𝜏𝑎𝑐𝑐, 𝜏 |𝜓𝑥⊗id) ≤
1

𝑝(|𝑥|)
, (7.1)

13Recall the notation used for post-measurement states defined in Section 2.
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where 𝜏 |𝜓𝑥⊗id denotes the post-measurement state of 𝜏𝖠𝖱 conditioned on projecting the 𝖠 reg-
ister onto the state |𝜓𝑥⟩. Let 1/𝑝(𝑛) be the closeness of the verifier.

In the second part of the soundness condition, we only require that the verifier’s quantum output
is close in trace distance to 𝜏 |𝜓𝑥⊗id if the verifier accepts with probability 1

2 and the probability
of obtaining measurement outcome 1 (with the ideal measurement) is at least 1/2. Intuitively, the
reason for this is that Equation (7.1) makes a statement involving the conditioned state 𝜏 |𝜓𝑥⊗id,
which can become very sensitive to errors if the measurement probability Tr

(︁
|𝜓𝑥⟩⟨𝜓𝑥|𝖠 𝜏𝖠

)︁
is very

small. The 1/2 threshold can be relaxed to being any inverse polynomial if the trace distance error
is suitably adjusted.

We defer the proof of Lemma 7.1 to Section 7.1.3.

We now use these two primitives (interactive state and measurement synthesis) to prove the
following.

Lemma 7.2. DistSuccinctUhlmann1 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯.

Proof. Fix a polynomial 𝑞(𝑛). We present in Protocol 2 an 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 protocol for
DistSuccinctUhlmann1 with completeness 1 − 2−Ω(𝑛), soundness 1

2 , and closeness 1/𝑞(𝑛). We
use as subroutines

1. The 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol for synthesizing the state sequence Γ (which is all succinctly described
states) with completeness 1, soundness 1/2, and closeness 1/32𝑞(𝑛)2.

2. The approximate measurement protocol from Lemma 7.1 for the state sequence Γ with close-
ness 1/32𝑞(𝑛)2.

For a circuit 𝐶 we write 𝐶⊗𝑚 to denote 𝑚 parallel copies of the circuit which generates the product
state |𝐶⟩⊗𝑚.

Protocol 2. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯1−2−𝑛+1, 1
2
, 1
𝑞

verifier for DistSuccinctUhlmann1

Input: Classical string 𝑥 = (1𝑛, 𝐶, �̂�) specifying a succinct description of a pair of circuits
(𝐶,𝐷), and quantum register 𝖡0.

1. Let 𝑚 = 16𝑞(𝑛)2, and perform the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol to synthesize |𝐶⟩⊗𝑚 in registers
𝖠𝟣𝖡𝟣 · · ·𝖠𝗆𝖡𝗆. If the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol rejects, reject.

2. Select a permutation 𝜋 ∈ 𝑆𝑚+1 uniformly at random and apply 𝒫𝜋 to 𝖡[0:𝑚]. Send 𝖡[0:𝑚]

to the prover.

3. Verifier receives registers 𝖡[0:𝑚] from the prover. Then

(a) Apply 𝒫𝜋−1 to 𝖡[0:𝑚].

(b) Perform the approximate measurement protocol with measurement |𝐷⟩⟨𝐷|⊗𝑚 on
quantum register 𝖠𝖡[𝑚]. If the protocol rejects or outputs 𝑏 = 0, reject.

(c) Accept and output the register 𝖡0.
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We show that the verifier described in Protocol 2 satisfies the required properties of
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 protocols. First, it is clear that the verifier runs in polynomial time. This uses
the fact that the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 and approximate measurement verifiers run in polynomial time, and
the succinct descriptions of |𝐶⟩⊗𝑚 and |𝐷⟩⊗𝑚 are polynomial-sized in the lengths of the succinct
descriptions 𝐶 and �̂�. We prove the completeness and soundness conditions in separate lemmas:

1. There is an honest quantum prover that success with probability at least 1 − 2−𝑛+1

(Lemma 7.3).

2. The verifier satisfies the soundness condition of an 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯1−2−𝑛+1,1/2,1/𝑞 protocol
(Lemma 7.4).

Combined, Lemmas 7.3 and 7.4 imply Lemma 7.2.

Lemma 7.3 (Completeness). For all valid SuccinctUhlmann1 instances 𝑥 = (1𝑛, 𝐶, �̂�), for
sufficiently large 𝑛, there exists an honest prover for Protocol 2 satisfying

Pr[𝑉𝑥(|𝐶⟩)⇆𝑃 ] ≥ 1− 2−𝑛+1 .

Proof. We define an honest prover that acts as follows: the honest prover first implements the honest
prover 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol with honest closeness 2−𝑛. Then the prover implements the Uhlmann
unitary between 𝐶 and 𝐷. Finally the prover implements the honest prover for the approximate
measurement protocol. After the first step of the protocol, the verifier holds a state within trace
distance 2−𝑛 of |𝐶⟩⊗𝑚+1 on registers 𝖠𝖡[0:𝑚], and after the second step the optimal Uhlmann
unitary has been performed. Therefore after the second step the verifier holds a state within trace
distance 2−𝑛 of |𝐷⟩⊗𝑚+1. By the completeness property of the approximate measurement protocol,
the verifier accepts with probability 1, and when run on |𝐷⟩⊗𝑚, the protocol outputs the bit 𝑏 = 1
with probability at least 1−2−𝑛. Since the input state is within 2−𝑛 of |𝐷⟩⊗𝑚 in trace distance, the
approximate measurement protocol on the verifier’s real state outputs 1 with probability at least
1− 2−𝑛+1. When interacting with this honest prover, this is the only step where the verifier has a
non-zero chance of rejecting, so the verifier accepts with probability at least 1− 2−𝑛+1.

Lemma 7.4 (Soundness). For all valid SuccinctUhlmann1 instances 𝑥 = (1𝑛, 𝐶, �̂�), for suffi-
ciently large 𝑛, for all quantum provers 𝑃 , there exists a channel completion Φ𝑥 of 𝑈𝑥 such that

if Pr[𝑉𝑥(|𝐶⟩)⇆𝑃 accepts] ≥ 1

2
then td(𝜎, (Φ𝑥 ⊗ id) |𝐶⟩⟨𝐶|) ≤ 1/𝑞(𝑛) ,

where 𝜎 denotes the output of 𝑉𝑥(|𝐶⟩)⇆𝑃 conditioned on the verifier 𝑉𝑥 accepting where 𝑞(𝑛) is the
polynomial used to define Protocol 2.

Proof. By the definition of SuccinctUhlmann1, for all channel completions Φ𝑥 of 𝑈𝑥 we have
that (Φ𝑥 ⊗ id)(|𝐶⟩⟨𝐶|) = |𝐷⟩⟨𝐷|, so it suffices to show that conditioned on accepting, the verifier
outputs a state within 1/𝑞(𝑛) of |𝐷⟩⟨𝐷| in trace distance. The proof follows the template set by the
proof that DistUhlmann1−negl ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖲𝖹𝖪HV, with some subtle differences. We first appeal
to Lemma 6.3 to claim that if the verifier could prepare exactly |𝐶⟩⟨𝐶|⊗𝑚 in registers 𝖠𝖡[𝑚] after the
𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol, measuring |𝐷⟩⟨𝐷| on 𝖠𝟢𝖡𝟢 accepts with high probability. We then show that the
verifier’s true state, with errors coming from both state preparation and approximate measurement,
is close to this ideal post-measurement state. Finally we apply the Gentle Measurement Lemma.
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We begin, as before, by expressing the state of the verifier’s registers. By the soundness property
of 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯, if the verifier accepts with probability at least 1/2, after step 1 the verifier has a state in
registers 𝖠𝖡[0:𝑚] that is within 1/32𝑞(𝑛)2 of |𝐶⟩⊗𝑚 in trace distance. Let 𝜌0 be the state of registers
𝖠𝖡[𝑚] after accepting in step 1 of the protocol. After performing the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol, the verifier
applies a random permutation on 𝖡[0:𝑚]; then the prover will perform some arbitrary action on
𝖡[0:𝑚] represented by a quantum channel Λ; and finally the verifier will undo the permutation from
the first step. Treating 𝖠𝟢 as a purification of the verifier’s quantum input, the state of 𝖠𝖡[0:𝑚] is
given by

𝜌* := 𝔼𝜋∈𝑆𝑚+1

(︁
(𝒫𝜋−1)𝖡[0:𝑚]

∘ Λ𝖡[0:𝑚]
∘ (𝒫𝜋)[0:𝑚]

)︁
(|𝐶⟩⟨𝐶|𝖠𝟢𝖡𝟢

⊗ (𝜌0)𝖠𝖡[𝑚]
) (7.2)

Let the state 𝜎* be defined as follows

𝜎* = 𝔼𝜋∈𝑆𝑚+1

(︁
(𝒫𝜋−1)𝖡[0:𝑚]

∘ Λ𝖡[0:𝑚]
∘ (𝒫𝜋)𝖡[0:𝑚]

)︁
(|𝐶⟩⟨𝐶|⊗𝑚+1) .

One can think of 𝜎* as the state the verifier hopes to have in their registers after step 3(𝑎). Because
trace distance can only decrease when applying a channel, we have that

td(𝜌*, 𝜎*) ≤ td((𝜌0)𝖠𝖡[𝑚]
, |𝐶⟩⟨𝐶|⊗𝑚) ≤ 1

32𝑞2
,

where the final inequality comes from the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 soundness promise, as explained above. Let 𝜌𝑎𝑐𝑐
be the state of the verifier after step 3(𝑏) conditioned on the verifier accepting. In step 3(𝑏), the
verifier hopes to measure some ideal measurement and see outcomeℳ, described below as

ℳ = id𝖠0𝖡0 ⊗ |𝐷⟩⟨𝐷|
⊗𝑚 .

Then let 𝜌*𝑎𝑐𝑐 = 𝜌*|ℳ and 𝜎*𝑎𝑐𝑐 = 𝜎*|ℳ. Our goal is to get a lower bound for the quantity

Tr
(︀
|𝐷⟩⟨𝐷|𝖠𝟢𝖡𝟢

𝜌𝑎𝑐𝑐
)︀
, (7.3)

because applying the Gentle Measurement Lemma will then give us a bound on the trace distance
between 𝜌𝑎𝑐𝑐 and |𝐷⟩⟨𝐷|𝖠𝟢𝖡𝟢

. Following the calculations in Lemma 6.3, we have that

Tr(|𝐷⟩⟨𝐷|𝖠𝟢𝖡𝟢
𝜎*𝑎𝑐𝑐) ≥ 1− 2

𝑚+ 1
.

From the approximate measurement soundness (Lemma 7.1), together with the assumption that
the verifier accepts with probability at least 1/2 (and thus the outcome bit 𝑏 of the approximate
measurement protocol is 1 with at least the same probability), we have that

td(𝜌𝑎𝑐𝑐, 𝜌
*
𝑎𝑐𝑐) ≤

1

32𝑞2
.
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We can compute the trace distance between 𝜌*𝑎𝑐𝑐 and 𝜎*𝑎𝑐𝑐 directly as follows:

2td(𝜎*𝑎𝑐𝑐, 𝜌
*
𝑎𝑐𝑐) =

⃦⃦⃦⃦
ℳ𝜎*ℳ
Tr(ℳ𝜎*)

− ℳ𝜌*ℳ
Tr(ℳ𝜌*)

⃦⃦⃦⃦
1

≤
⃦⃦⃦⃦
ℳ𝜎*ℳ
Tr(ℳ𝜎*)

− ℳ𝜎*ℳ
Tr(ℳ𝜌*)

⃦⃦⃦⃦
1

+

⃦⃦⃦⃦
ℳ(𝜎* − 𝜌*)ℳ

Tr(ℳ𝜌)

⃦⃦⃦⃦
1

≤ ‖ℳ𝜎*ℳ‖1

⃒⃒⃒⃒
1

Tr(ℳ𝜎*)
− 1

Tr(ℳ𝜌*)

⃒⃒⃒⃒
+
‖ℳ(𝜎* − 𝜌*)ℳ‖1

Tr(ℳ𝜌*)

≤ Tr(ℳ𝜎*)

⃒⃒⃒⃒
Tr(ℳ𝜌*)− Tr(ℳ𝜎*)

Tr(ℳ𝜌*)Tr(ℳ𝜎*)

⃒⃒⃒⃒
+

1

8𝑞2

≤ 3

16𝑞2
.

For both terms, we get bounds from the fact that td(𝜌*, 𝜎*) ≤ 1/32𝑞2 (and trace distance is
contractive under channels, including measurements) and Tr(ℳ𝜌*) ≥ 1/2. For the second term, we
multiply by 2 because the trace distance is half the 1-norm. Thus we have that

td(𝜎*𝑎𝑐𝑐, 𝜌
*
𝑎𝑐𝑐) ≤

3

32𝑞2
.

Applying the triangle inequality we have that

td(𝜌𝑎𝑐𝑐, 𝜎
*
𝑎𝑐𝑐) ≤

1

8𝑞2
.

From this trace distance bound we can bound Equation (7.3) by

Tr
(︀
|𝐷⟩⟨𝐷|𝖠𝟢𝖡𝟢

𝜌𝑎𝑐𝑐
)︀
≥ 1− 2

𝑚+ 1
− 1

8𝑞2
.

Applying the gentle measurement lemma (Proposition 2.2), we see that the trace distance error
from the state |𝐷⟩⟨𝐷| is at most

2

√︂
2

𝑚+ 1
+

1

8𝑞2
≤ 2

√︂
1

4𝑞2
≤ 1/𝑞 ,

where we use the fact that 𝑚 = 16𝑞2, so 2/(𝑚 + 1) ≤ 1/(8𝑞2). This completes the proof of
Lemma 7.4.

7.1.2 DistSuccinctUhlmann1 is 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯-hard

Having shown that DistSuccinctUhlmann1 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯, we now need to show that it is
in fact a complete problem, i.e. any unitary synthesis problem in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 can be reduced to
DistSuccinctUhlmann1. This is the statement of Lemma 7.5. Before giving the full proof of
Lemma 7.5, we provide some intuition. We need to show that any distributional unitary synthesis
problem (U ,Ψ) ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 can be solved by a polynomial-sized circuit with access to a
DistSuccinctUhlmann1-oracle.

As a first step, let us consider a 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯-protocol (i.e. an interactive protocol where the verifier
receives no input state and is asked to prepare a certain quantum state from scratch) and implement
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this in 𝗌𝗍𝖺𝗍𝖾𝖡𝖰𝖯DistSuccinctUhlmann1 . For any 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯-protocol, by [MY23, Lemma 7.5] there exist
purifications of the intermediate states of the protocol (on the verifier and message registers) that
are in 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤. Furthermore, from the proof of [MY23, Lemma 7.5] it is easy to see that the
circuits preparing these purifications have succinct descriptions that are efficiently computable from
the descriptions of the verifier actions. Then, a possible successful prover strategy in the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯-
protocol is simply to implement the Uhlmann transformation between these purifications; see [MY23,
Proof of Thm. 7.1] for a more detailed explanation of this idea. These Uhlmann transformations
can be accomplished by a DistSuccinctUhlmann1-oracle: we can efficiently compute the succinct
descriptions of the circuits between which we need to apply the Uhlmann transformation and feed
these descriptions to the Uhlmann oracle in order to perform the required transformation, effectively
simulating the prover with the Uhlmann oracle.

Now we consider the more difficult case of an 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯-protocol. The key difficulty com-
pared to the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯-setting is that we are only given one copy of one register to which we want
to apply our desired unitary. However, we can observe that the above argument for the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯-
protocol only relied on being able to compute the succinct classical descriptions of the circuits
preparing purifications of the intermediate states of the protocol. Once we have these classical
descriptions, we can implement the required Uhlmann transformation on any given state, i.e. the
step of applying the Uhlmann oracle does not require having access to arbitrarily many copies of
the input state.

Therefore, to apply the 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯-protocol on a given input register, we proceed in two
steps. The first step is purely classical: since in a distributional unitary synthesis problem (U ,Ψ) ∈
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 the state family Ψ is in 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯, we can construct a 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯-protocol for the state
𝑈𝑥 |𝜓𝑥⟩ with 𝑈𝑥 ∈ U and |𝜓𝑥⟩ ∈ Ψ.14 As described above, this 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯-protocol allows us to
efficiently (classically) compute succinct descriptions of the circuits preparing purifications of the
intermediate states of the protocol. In the second (quantum) step, we can now use these pre-
computed succinct classical descriptions to efficiently simulate the 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯-protocol with the
Uhlmann oracle. For this, when it is the verifier’s turn, we simply apply the (efficient) verifier
actions, and when it is the prover’s turn we use our pre-computed succinct classical descriptions
and the Uhlmann oracle to apply the prover actions. This way, we can simulate the actions of the
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯-protocol given only a single copy of the input register.

We formalise this idea in the following lemma.

Lemma 7.5. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 polynomial-time reduces to DistSuccinctUhlmann1.

Proof. Let (U ,Ψ) ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯. This means that there exists some polynomial-time quantum
verifier 𝑉 = (𝑉𝑥) who receives as input the 𝖠-register of the state |𝜓𝑥⟩𝖠𝖱 and satisfies the complete-
ness and soundness condition in Definition 4.2. Throughout the proof, whenever we say “successful
prover”, we mean a prover that is accepted in the protocol with probability at least the soundness
threshold 𝑠(𝑛) = 1/2. Since Ψ ∈ 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯, there exists another polynomial-time verifier 𝑉 ′ = (𝑉 ′𝑥)
for synthesising the states Ψ = (|𝜓𝑥⟩); note that 𝑉 ′ receives no quantum input. The can combine
these two verifier’s into one verifier 𝑉 = (𝑉𝑥) who receives no input and first executed the actions
of 𝑉 ′; at the end of this, 𝑉 will be in possession of a state on registers 𝖠 and 𝖱. 𝑉 then runs 𝑉
with 𝖠 as the input register and outputs the resulting state. If either 𝑉 or 𝑉 ′ rejects, so does 𝑉 .

14Note that of course this is not the same as solving the average unitary synthesis problem: here, we simply
prepare the desired state from scratch, whereas in the unitary synthesis setting we are given a single register of an
entangled quantum state and have to apply the desired unitary to that register while keeping the entanglement with
the remaining (inaccessible) register intact.
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Applying [MY23, Lemma 7.5] to the verifier 𝑉 shows that the intermediate states on the message
and verifier register in the interaction of 𝑉 with any prover with sufficiently high success probability
have purifications in 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤. Furthermore, from the proof of [MY23, Lemma 7.5] it is easy
to see that there are polynomial-time Turing machines that, given as input a description of the
verifier’s actions in the protocol, output succinct classical descriptions of the quantum polynomial-
space circuits for preparing |𝜓𝑛,𝑗⟩ and |𝜙𝑛,𝑗⟩. This holds because [MY23, Lemma 7.5] only relies
on the block-encoding transformations implemented in [MY23, Theorems 5.5 and 6.1], which have
efficient (and explicit) descriptions.

This means that for each round 𝑖 of the protocol, there exist polynomial-space quantum cir-
cuits 𝐶𝑖𝑥 and 𝐷𝑖

𝑥 with efficiently computable succinct classical descriptions 𝐶𝑖𝑥 and �̂�𝑖
𝑥 such that

|𝛼𝑖𝑥⟩𝖵𝗂𝖬𝗂𝖯𝗂 = 𝐶𝑖𝑥 |0 . . . 0⟩ and |𝛽𝑖𝑥⟩𝖵𝗂𝖬𝗂𝖯𝗂 = 𝐷𝑖
𝑥 |0 . . . 0⟩ are purifications of the reduced state on the

message register 𝖬𝗂 and verifier register 𝖵𝗂 of the interactive protocol right before and after the
prover’s action in round 𝑖. Observe that because the verifier register in the interactive protocol is
not acted upon by the prover, the reduced states on the verifier register are unchanged, i.e.

Tr𝖬𝗂𝖯𝗂

(︀
|𝛼𝑖𝑥⟩⟨𝛼𝑖𝑥|𝖵𝗂𝖬𝗂𝖯𝗂

)︀
= Tr𝖬𝗂𝖯𝗂

(︀
|𝛽𝑖𝑥⟩⟨𝛽𝑖𝑥|𝖵𝗂𝖬𝗂𝖯𝗂

)︀
.

We can therefore interpret the circuit pair (𝐶𝑖𝑥, 𝐷𝑖
𝑥) as an instance of the SuccinctUhlmann prob-

lem, with 𝖵𝗂 taking the role of the register that cannot be acted upon by the Uhlmann unitary.15

With access to a DistSuccinctUhlmann-oracle, we can therefore apply an Uhlmann transforma-
tion mapping |𝛼𝑖𝑥⟩𝖵𝗂𝖬𝗂𝖯𝗂 = 𝐶𝑖𝑥 |0 . . . 0⟩ to |𝛽𝑖𝑥⟩𝖵𝗂𝖬𝗂𝖯𝗂 = 𝐷𝑖

𝑥 |0 . . . 0⟩ by acting only on registers 𝖬𝗂𝖯𝗂.
This means that with the DistSuccinctUhlmann-oracle, we can efficiently implement the actions
of a successful prover in the interactive protocol.16

We now use this observation to construct a polynomial-size quantum query circuit that, when
instantiated with DistSuccinctUhlmann1 and run on register 𝖠 of |𝜓𝑥⟩, produces the same
output state as the quantum interactive protocol with verifier 𝑉 = (𝑉𝑥) for this problem. The
query circuit is constructed as follows: the circuit receives as input register 𝖠 of |𝜓𝑥⟩. The circuit
applies the first action of the verifier 𝑉 , which we can assume to be unitary by purifying the actions
of 𝑉 and which can be done in polynomial-time since 𝑉 is efficient. To the resulting state, the
query circuit then applies an oracle gate with the succinct Uhlmann instance (1𝑛, 𝐶𝑖

*
𝑥 , �̂�

𝑖*
𝑥 ), where

𝑖* is the round of the verifier 𝑉 that corresponds to the first round of the verifier 𝑉 (i.e. the first
round that is part of the 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯, not the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯, protocol). As we showed above, 𝐶𝑖*𝑥 and
�̂�𝑖*
𝑥 as well as the number of qubits 𝑛 are efficiently computable given a description of the verifier

𝑉 . This step will correctly implement the actions of a successful prover on this state. The query
circuit then proceeds in this manner, applying the next action of the verifier 𝑉 , simulating the next
action of the prover using the oracle gates, etc.

Since 𝑉 is polynomial-time, it is clear that the query circuit we constructed above is polynomial-
time, too. Finally, to show that it outputs the same state as the interactive protocol, we simply
notice that since the quantum query circuits simulates a run of the protocol with an honest prover

15Technically we also need to include the space requirement of 𝐶𝑖𝑥 and 𝐷𝑖
𝑥, which can be explicitly computed from

the proof of [MY23, Lemma 7.5], as part of the Uhlmann instance, and pad the verifier register 𝖵𝗂 with additional
qubits so that 𝖵𝗂 and 𝖬𝗂𝖯𝗂 have the same number 𝑛 of qubits. To help with readability, we do not do this explicitly
in the proof.

16Note that of course not every successful prover has to implement the Uhlmann transformation. The important
point is that we can implement some successful prover in this way, and the guarantee of the interactive protocol
applies to any successful prover.

70



and we are applying it on the state |𝜓𝑥⟩ for which the guarantee of the 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯-problem
(U ,Ψ) holds, it follows that the query circuit produces the correct state.

Combining Lemma 7.2 and Lemma 7.5, we immediately obtain the following theorem.

Theorem 7.6. The distributional unitary synthesis problem DistSuccinctUhlmann1 is complete
for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯.

7.1.3 Proof of approximate measurement protocol (Lemma 7.1)

To conclude this subsection, we need to prove Lemma 7.1, which we used in Lemma 7.2. The key
insight, first observed in [RY22], will be that given copies of a pure state, the verifier can approx-
imately perform the projection onto the pure state via density matrix exponentiation, described
below.

Lemma 7.7 (Density Matrix Exponentiation [LMR14, KLL+17]). Let 𝑡 ∈ ℝ. There exists a
quantum polynomial-time algorithm DME that takes as input registers 𝖠𝖢[𝑚] and outputs register 𝖠

with the following guarantee: if the input registers are in state 𝜏𝖠𝖡 ⊗ 𝜌⊗𝑘𝖢[𝑚]
, where 𝖡 is an arbitrary

purifying register on which the algorithm does not act and 𝜌 is an 𝑛-qubit mixed state, then the
output state 𝜎𝖠𝖡 of the algorithm satisfies

td(𝜎𝖠𝖡, (𝑊𝖠 ⊗ id𝖡)𝜏𝖠𝖡(𝑊
†
𝖠 ⊗ id𝖡)) ≤ 𝑂(𝑡2/𝑘) , where 𝑊 = 𝑒2𝜋𝑖·𝑡·𝜌 .

Let 𝑈DME be a unitary dilation of DME, so that applying 𝑈DME and tracing out all registers
except for 𝖠 yields 𝜎𝖠𝖡 in the lemma statement above. Although not proven here, following from
the implementation in [LMR14], DME does not act on an ancilla register. Then there is a quantum
polynomial time algorithm that implements a controlled DME operation, on a control register 𝖱,
which implements the following unitary

𝐶𝖱DME = |0⟩⟨0|𝖱 ⊗ id + |1⟩⟨1|𝖱 ⊗ (𝑈DME)𝖠𝖢[𝑚]
.

We now describe the approximate measurement protocol, mentioned in Lemma 7.1, which
uses the controlled 𝐶(·)DME operation as a subroutine. Let 𝑘𝑞 be the number of copies
of the “program state” 𝜌 needed to implement DME to trace distance error 1/(10𝑞(𝑛)).

Protocol 3. Approximate measurement

Input: A classical string 𝑥 that is a succinct representation of a polynomial-space circuit 𝐶,
acting on 𝑛 qubits, that prepares some state |𝜓𝑥⟩ = |𝐶⟩, and a quantum register 𝖠.

1. Perform the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol for preparing |𝜓𝑥⟩⊗𝑘𝑞 in register 𝖢[𝑚] with soundness error
1/(10𝑞(𝑛)). If the protocol rejects, reject.

2. If the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol accepts:

(a) Prepare ancilla qubit |+⟩𝖭.

(b) Perform 𝐶𝖭DME on registers 𝖠𝖢[𝑚] with 𝑡 = 1
2 .

(c) Measure 𝖭 with the POVM {|+⟩⟨+| , |−⟩⟨−|}. Accept and output register 𝖠 and the
result of the measurement (0 for the first outcome, 1 for the second).
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Lemma 7.8 (Approximate measurement completeness). There exists an honest prover 𝑃 * such
that when 𝑉 implements Protocol 3,

Pr[𝑉 (𝜏𝖠𝖡)⇆𝑃 * accepts] = 1 .

Proof. The honest prover implements the honest 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol for |𝜓𝑥⟩⊗𝑘𝑞 with completeness
error 2−𝑛. By the completeness of 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯, the verifier accepts with probability 1 during the
𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 protocol. Hence, the verifier accepts with probability 1.

Corollary 7.9 (Approximate measurement honest prover output probability). For the honest prover
𝑃 *, when the input state is |𝜓𝑥⟩⟨𝜓𝑥|𝖠 ⊗ 𝜌𝖡 for some state 𝜌𝖡,

Pr[𝑉 (|𝜓𝑥⟩⟨𝜓𝑥|𝖠 ⊗ 𝜌𝖡)⇆𝑃 * outputs 1] ≥ 1− 2−𝑛 .

Proof. We first describe the DME protocol in more detail (see [LMR14] for a full description).
The protocol involves performing partial SWAP gates (𝑒−𝑖Δ𝑡𝖲𝖶𝖠𝖯) with a well-chosen value of Δ𝑡.
From [LMR14, Equation (1)], the action of the partial SWAP gate on one of the input registers is
given by

Tr𝖯(𝑒
−𝑖Δ𝑡𝑆 ((𝜌)𝖯 ⊗ (𝜎)𝖰) 𝑒

𝑖Δ𝑡𝑆) = cos2(Δ𝑡)𝜎 + sin2(Δ𝑡)𝜌− 𝑖 sin(Δ𝑡)[𝜌, 𝜎] , (7.4)

whence it follows that when 𝜌 = 𝜎 = |𝜓𝑥⟩⟨𝜓𝑥|, the DME algorithm implements the identity opera-
tion. Hence, if the verifier’s state after step 1 was exactly |𝜓𝑥⟩⊗𝑘𝑞+1, it would accept with probability
1.

By the completeness property of the honest prover (for 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯), the state of the verifier’s
system after step 1 is within 2−𝑛 of |𝜓𝑥⟩⊗𝑘𝑞+1 in trace distance. Since step 2 of the protocol can be
thought of as a single measurement, the probability that the verifier accepts after interacting with
the honest prover is at least 1− 2−𝑛.

Lemma 7.10 (Approximate measurement soundness). For all provers 𝑃 that are accepted by the
verifier with probability at least 1/2,

|Pr[𝑉 (𝜏𝖠𝖡)⇆𝑃 outputs 1]− Tr((|𝜓𝑥⟩⟨𝜓𝑥| ⊗ id)𝜏)| ≤ 𝛿(|𝑥|) . (7.5)

Furthermore if the verifier outputs 1 with probability at least 1/2, conditioned on accepting and
outputting 1, the verifier outputs a state 𝜏𝑎𝑐𝑐 satisfying

td(𝜏𝑎𝑐𝑐, 𝜏 |𝜓𝑥⊗id) ≤ 1/𝑞(𝑛) . (7.6)

Proof. By the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 soundness property, conditioned on accepting with probability at least 1/2,
the verifier holds a state within 1/(10𝑞(𝑛)) of |𝜓𝑥⟩⟨𝜓𝑥|⊗𝑘𝑞 in 𝖢. Let 𝜌1 be the state of 𝖢 after
interacting with the prover on step 1 and accepting. Define the following unitary 𝑊

𝑊 = 𝑒𝑖𝜋|𝜓𝑥⟩⟨𝜓𝑥| = id− 2 |𝜓𝑥⟩⟨𝜓𝑥| .

𝑊 is the unitary that DME will approximate when 𝜌 = |𝜓𝑥⟩⟨𝜓𝑥| and 𝑡 = 1/2 in Lemma 7.7. Now
define the following states.

𝜎 = 𝐶𝖭DME(|+⟩⟨+|𝖭 ⊗ 𝜏𝖠𝖡 ⊗ (𝜌1)𝖢) ,

𝜎′ = 𝐶𝖭DME(|+⟩⟨+|𝖭 ⊗ 𝜏𝖠𝖡 ⊗ (|𝜓𝑥⟩⟨𝜓𝑥|)𝖢) ,

𝜎* =
1

2

(︁
|0⟩⟨0|𝖭 ⊗ 𝜏𝖠𝖡 + |1⟩⟨1|𝖭 ⊗ (𝑊𝜏𝑊 †)𝖠𝖡 + |0⟩⟨1|𝖭 ⊗ (𝜏𝑊 †)𝖠𝖡 + |1⟩⟨0|𝖭 ⊗ (𝑊𝜏)𝖠𝖡

)︁
.
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Note that 𝜎 is the state the algorithm will hold after step 2(𝑏), 𝜎′ is the state the verifier would hold
if it could do perfect state preparation of |𝜓𝑥⟩⟨𝜓𝑥| in step 1, and 𝜎* is the state the verifier would
hold if it could perform 𝑊 on 𝖠 instead of performing 𝐶𝖭DME with perfect program states. From
the 𝗌𝗍𝖺𝗍𝖾𝖰𝖨𝖯 soundness property,

td(𝜎, 𝜎′) ≤ 1

10𝑞(𝑛)

and from Lemma 7.7,

td(𝜎′, 𝜎*) ≤ 1

10𝑞(𝑛)
.

Combining these with the triangle inequality yields

td(𝜎, 𝜎*) ≤ 1

5𝑞(𝑛)
. (7.7)

It suffices to show the following claim about the ideal state 𝜎*.

Claim 7.11. Measuring the POVM {|+⟩⟨+| , |−⟩⟨−|} on 𝜎* yields outcome 1 with probability

Tr((|𝜓𝑥⟩⟨𝜓𝑥| ⊗ id)𝜏) .

and the state of register 𝖠 after measuring the POVM on 𝜎* and seeing outcome |−⟩⟨−| is 𝜏 |𝜓𝑥⊗id.

We can assume that 𝜏 is a pure state since we can take 𝖡 to be a purifying register, so let
𝜏 = |𝜑⟩⟨𝜑|𝖠𝖡 be a pure state. Since𝑊 has 2 eigenvalues, with corresponding eigenspaces |𝜓𝑥⟩⟨𝜓𝑥|⊗id
and id − |𝜓𝑥⟩⟨𝜓𝑥| ⊗ id, consider the following decomposition of |𝜑⟩ in the {|𝜓𝑥⟩⟨𝜓𝑥|𝖠 ⊗ id𝖡, id −
|𝜓𝑥⟩⟨𝜓𝑥|𝖠 ⊗ id𝖡} subspaces

|𝜑⟩ = 𝛼 |𝜑𝜓⟩+ 𝛽 |𝜑⊥⟩ .

It is clear from the definition of 𝜎* that 𝜎* is a pure state when 𝜏 is a pure state. Then we can
express 𝜎* = |𝜑*⟩⟨𝜑*| as a pure state (in ket notation) as

|𝜑*⟩ = 1√
2
|0⟩𝖭 ⊗ (𝛼 |𝜑𝜓⟩+ 𝛽 |𝜑⊥⟩)𝖠𝖡 +

1√
2
|1⟩𝖭 ⊗ (−𝛼 |𝜑𝜓⟩+ 𝛽 |𝜑⊥⟩)𝖠𝖡 .

Re-arranging terms, we get

|𝜑*⟩ = 𝛽 |+⟩𝖭 ⊗ |𝜑⊥⟩𝖠𝖡 + 𝛼 |−⟩𝖭 ⊗ |𝜑𝜓⟩𝖠𝖡 .

Then it is clear that the probability of seeing outcome |−⟩⟨−| when measuring the POVM
{|+⟩⟨+|𝖭 , |−⟩⟨−|𝖭} is

|𝛼2| = Tr(|𝜓𝑥⟩⟨𝜓𝑥|𝖠 𝜏𝖠𝖡) .

Thus, the measurement yields outcome 1 with the desired probability. With the trace distance
bound from Equation (7.7), we have Equation (7.5). Furthermore the state of registers 𝖠𝖡 after
measuring the POVM on 𝜎* and seeing outcome |−⟩⟨−| is

|𝜑𝜓⟩⟨𝜑𝜓| = 𝜏 |𝜓𝑥⊗id .

Our goal now is to bound the post-measurement state when measuring |−⟩⟨−| on 𝜎 instead of 𝜎*.
Before doing this, we prove a useful inequality relating the post-measurement state of states that
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start out close. Let 𝜌 and 𝜌′ be any two states satisfying td(𝜌, 𝜌′) ≤ 𝛿 ≤ 1/4, and Tr(Π𝜌) ≥ 1/2 for
some projector Π. Then we have that

td
(︀
𝜌|Π, 𝜌′|Π

)︀
≤ 1

Tr(Π𝜌)
td

(︂
Π𝜌Π,Π𝜌′Π′

Π𝜌

Π𝜌′

)︂
≤ 2 td(𝜌, 𝜌′(1 + 4𝛿))

≤
⃦⃦
𝜌− 𝜌′(1 + 4𝛿)

⃦⃦
1

≤
⃦⃦
𝜌− 𝜌′

⃦⃦
1
+ 4𝛿

⃦⃦
𝜌′
⃦⃦
1

≤ 5𝛿 .

Here the second line results from the fact that Tr(Π𝜌′) ≥ Tr(Π𝜌)− 𝛿, so

Tr(Π𝜌)

Tr(Π𝜌′)
≤ Tr(Π𝜌)

Tr(Π𝜌)− 𝛿
=

1

1− 𝛿/Tr(Π𝜌)
≤ 1 + 2𝛿/Tr(Π𝜌)

≤ 1 + 4𝛿 .

Here the last line uses the fact that for 𝑥 ≤ 1/2, we have 1
1−𝑥 ≤ 1 + 2𝑥, and the assumption that

Tr(Π𝜌) ≥ 1/2. The rest of the lines apply the definition of trace distance and the triangle inequality
for the 1-norm. In the calculations above, let 𝜌 = 𝜎, 𝜌′ = 𝜎*, and Π = |−⟩⟨−|. We have shown that

𝜎*||−⟩⟨−| = 𝜏 |𝜓𝑥⊗id and td(𝜎, 𝜎*) ≤ 1/(5𝑞(𝑛)) ,

and by the assumption that Tr(|𝜓𝑥⟩⟨𝜓𝑥|𝖠 𝜏𝖠𝖡) ≥ 1/2, we have that

Tr(|−⟩⟨−|𝖭 𝜎
*) ≥ 1

2
.

Putting these together with the definition of 𝜏𝑎𝑐𝑐 = 𝜎||−⟩⟨−|, we have that

td(𝜏𝑎𝑐𝑐, 𝜏 |𝜓𝑥⊗id) ≤
1

𝑞(𝑛)
.

This completes the proof of the lemma.

Finally we combine the previous lemmas to prove Lemma 7.1.

Proof of Lemma 7.1. Lemma 7.8 and Corollary 7.9 prove completeness. Lemma 7.10 proves sound-
ness.

7.2 Completeness for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤

Having shown that DistSuccinctUhlmann1 is complete for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯, we will now show
that it is also complete for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤. Together, this implies that 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 =
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 (Corollary 7.13).

Theorem 7.12. DistSuccinctUhlmann1 is complete for 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤.
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Proof. We first show that DistSuccinctUhlmann1 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤. This is essentially a
restatement of [MY23, Theorem 7.4], but re-written using notation defined in this paper. An
instance 𝑈𝑥 of SuccinctUhlmann1 is specified by a succinct description of a pair of unitary circuits
(𝐶𝑥, 𝐷𝑥) on 𝑛 = poly(|𝑥|) qubits. This means that the space complexity of 𝐶𝑥 and𝐷𝑥 is poly(|𝑥|), so
the state families |𝜓𝑥⟩𝖠𝖡 = 𝐶𝑥 |02𝑛⟩𝖠𝖡 and |𝜑𝑥⟩ = 𝐷𝑥 |02𝑛⟩𝖠𝖡 are in 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 (where 𝖠,𝖡 have 𝑛
qubits each, and 𝐶𝑥, 𝐷𝑥 act only on 𝖡). Then, [MY23, Theorem 7.4] states that there exist a family
of unitaries (𝐾𝑥)𝑥 ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 that performs the Uhlmann transformation between the state
families |𝜓𝑥⟩ and |𝜑𝑥⟩. More formally, for any polynomial 𝑝, (|𝜓𝑥⟩)𝑥, (|𝜑𝑥⟩)𝑥 ∈ 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤1/𝑝,
and 𝐹 (𝜌𝑥, 𝜎𝑥) = 1, where 𝜌𝑥 and 𝜎𝑥 are the reduced density matrices of |𝜓𝑥⟩𝖠𝖡 and |𝜑𝑥⟩𝖠𝖡 on
register 𝖠, it holds that td

(︁
(id⊗𝐾𝑥) |𝜓𝑥⟩⟨𝜓𝑥| (id⊗𝐾†𝑥) , |𝜑𝑥⟩⟨𝜑𝑥|

)︁
≤ 𝑂(1/𝑝(|𝑥|)). This implies that

DistSuccinctUhlmann1 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤.17

We now need to show that any distributional unitary synthesis problem (U = (𝑈𝑥)𝑥,Ψ =
(|𝜓𝑥⟩)𝑥) ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 can be reduced to a succinct Uhlmann problem in the sense of
Definition 3.21. The idea for this is simple, though the formalisation is slightly tedious: to im-
plement (U = (𝑈𝑥)𝑥,Ψ = (|𝜓𝑥⟩)𝑥), we can simply run the Uhlmann transformation between |𝜓𝑥⟩
and 𝑈𝑥 |𝜓𝑥⟩. Since Ψ ∈ 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤, 𝑈𝑥 |𝜓𝑥⟩ is too, so we can efficiently construct a string 𝑦
that describes this Uhlmann instance. Further note that their reduced states on the first half
of the qubits are identical, since 𝑈𝑥 only acts on the second half of qubits. With access to a
DistSuccinctUhlmann1-oracle, we can therefore implement this Uhlmann transformation, and
as a result implement any unitary synthesis problem (U ,Ψ) ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤.

To show this formally, we fix any polynomial 𝑞(𝑛) and need to construct a quantum query
algorithm 𝐶* = (𝐶*𝑥)𝑥 and a polynomial 𝑟(𝑛) such that all 1/𝑟(𝑛)-error average case instantiations
of 𝐶DistSuccinctUhlmann1 implement (U ,Ψ) with average-case error 1/𝑞(𝑛).

Since (U ,Ψ) ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, by definition Ψ = (|𝜓𝑥⟩)𝑥 ∈ 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤, i.e. there exists
a family of space-uniform circuits 𝑆 = (𝑆𝑥) on 2𝑛 = poly(|𝑥|) qubits such that |𝜓′𝑥⟩ := 𝑆𝑥 |02𝑛⟩ is
1/𝑞′(|𝑥|)-close in trace distance to |𝜓𝑥⟩ for 𝑞′(𝑛) a polynomial (dependent on 𝑞) that we will choose
later. Let 𝐴 = (𝐴𝑥)𝑥 denote the space-uniform quantum algorithm that implements (U ,Ψ) with
average-case error 1/𝑞′(𝑛). Define the circuit 𝑇𝑥 to be the concatenation of id⊗ 𝐴𝑥 and 𝑆𝑥 (i.e. it
implements (id ⊗ 𝐴𝑥)𝑆𝑥), which is space-uniform since 𝐴 and 𝑆 are space-uniform. Since both 𝑆𝑥
and 𝑇𝑥 are space-uniform circuits on at most 2𝑛 qubits, this means that, given 𝑥, we can efficiently
construct a string 𝑦 such that 𝑦 = (1𝑛, 𝑆, 𝑇 ) is a valid succinct Uhlmann instance (Definition 5.5)
for the family of circuit pairs (𝑆, 𝑇 ). We therefore define the following family of quantum query
circuits: 𝐶*𝑥 contains a single oracle gate acting on 𝑛 qubits with label 𝑦, where 𝑦 = (1𝑛, 𝑆, 𝑇 ) is a
valid succinct Uhlmann instance constructed from 𝑥 as described before. Since 𝑦 can be efficiently
computed from 𝑥, (𝐶*𝑥)𝑥 is a time-uniform family of quantum query circuits.

By assumption, there exists a channel completion Φ𝑥 of 𝑈𝑥 such that

td
(︁
(𝐴𝑥 ⊗ id)(𝜓𝑥), (Φ𝑥 ⊗ id)(𝜓𝑥)

)︁
≤ 1/𝑞′(𝑛) .

Furthermore, by construction the Uhlmann unitary for circuits 𝑆𝑥 and 𝑇𝑥 applied to the state
|𝜓′𝑥⟩ = 𝑆𝑥 |02𝑛⟩ produces the state 𝑇𝑥 |02𝑛⟩ = (𝐴𝑥 ⊗ id) |𝜓′𝑥⟩. Therefore, considering a 1/𝑟(𝑛)-error
average case instantiation 𝐶DistSuccinctUhlmann1 and using td(𝜓𝑥, 𝜓

′
𝑥) ≤ 1/𝑞′(𝑛), we can apply the

17Note that [MY23] does not employ the language of average case unitary complexity classes, but their phrasing
of “there exists a unitary in 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 that performs the Uhlmann transformation on these specific states” is
equivalent to our definition of average case unitary classes.
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triangle inequality to get

(id⊗ 𝐶DistSuccinctUhlmann1
𝑥 )(𝜓𝑥) = (id⊗𝐴𝑥)(𝜓𝑥) ≤ 1/𝑟(𝑛) + 2/𝑞′(𝑛) .

Choosing 𝑟(𝑛) = 𝑞′(𝑛) = 4𝑞(𝑛) and combining these two statements with the triangle inequality, this
means that 𝐶DistSuccinctUhlmann1

𝑥 implements 𝑈𝑥 (for channel completion Φ𝑥) with average-case
error 1/𝑞(𝑛) as desired.

We are now in a position to prove that 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 and 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 are in fact equal.
This answers an average-case version of an open problem raised in [RY22, MY23], namely whether
𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 = 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, and is one of the first non-trivial results on relations between unitary
complexity classes. It also highlights the utility of having complete problems for unitary complexity
classes, just like complete problems for traditional complexity classes are an invaluable tool for
relating classes to one another.

Corollary 7.13. 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 = 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯.

Proof. This follows immediately from the fact that DistSuccinctUhlmann is complete both for
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 and 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤.

While this resolves the question in the average case, the worst-case version of this question
remains open:

Open Problem 14. Does it hold that 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 = 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤?

Another interesting open question concerns the relationship between between traditional com-
plexity theory and unitary complexity theory, and in particular the Uhlmann Transformation Prob-
lem:

Open Problem 15. SuccinctUhlmann ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝖯𝖲𝖯𝖠𝖢𝖤? This is a “dual” statement to
Theorem 7.12. This is closely related to the Unitary Synthesis Problem of [AK07] – not to be
confused with our notion of unitary synthesis problems – which asks if there is a quantum algorithm
𝐴 and for every 𝑛-qubit unitary 𝑈 a boolean function 𝑓 : {0, 1}poly(𝑛) → {0, 1} such that the unitary
𝑈 can be implemented by 𝐴𝑓𝑈 .

7.3 Completeness for worst-case 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤

Most of the results in this paper that we have seen so far – and the ones that follow – focus
on the complexity of the distributional Uhlmann Transformation Problem and average-case uni-
tary complexity classes such as 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 and 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤. As mentioned previously,
average-case unitary complexity classes are natural for studying problems where the goal is to locally
transform one entangled state to another.

However the “worst-case” unitary synthesis problems like Uhlmann and “worst-case” unitary
complexity classes such as 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 and 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 are natural in their own right, and there
are many interesting questions about them. For example, is Uhlmann is complete for a natural
worst-case unitary complexity classes? Is 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 = 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, just like 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖰𝖨𝖯 =
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤?

Here we describe a result about worst-case unitary complexity: SuccinctUhlmann is
complete for 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, complementing the completeness of DistSuccinctUhlmann for
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤. We sketch the argument for this, and leave a deeper exploration of worst-case
unitary complexity classes, and the questions mentioned above, to future work.
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Theorem 7.14. SuccinctUhlmann1,𝜂 is complete for 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 for cutoff parameter 𝜂 =
2−2𝑛.

Recall that the unitary synthesis problems Uhlmann and SuccinctUhlmann are parameter-
ized by a cutoff parameter 𝜂, which is used to make the definition of the canonical Uhlmann isometry
(see Definition 5.2) more robust. As discussed at the end of Section 5, the cutoff parameter is set to
0 for the distributional problems DistUhlmann and DistSuccinctUhlmann. However the cut-
off parameter is important for discussing the worst-case complexity of the Uhlmann Transformation
Problem.

Proof sketch. First we sketch the hardness result; i.e., that SuccinctUhlmann1,𝜂 is hard for
𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤. Let 𝐴 denote a polynomial space quantum algorithm that implements a unitary
synthesis problem U ∈ 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤. Suppose for simplicity that 𝐴 is a unitary algorithm (i.e., it
consists only of unitary gates). Fix an instance size 𝑛, and consider the following two states: let |𝐶⟩
denote the maximally entangled state on 𝑛 qubits, and let |𝐷⟩ denote the state obtained by applying
𝐴 on half of the maximally entangled state. Clearly (|𝐶⟩ , |𝐷⟩) are computable in polynomial space
and thus (1𝑛, 𝐶, �̂�) are valid SuccinctUhlmann1 instances. The canonical Uhlmann isometry 𝑊
with cutoff 𝜂 corresponding to (|𝐶⟩ , |𝐷⟩) is exactly the unitary 𝐴, which can be seen as follows:

𝑊 = sgn𝜂(Tr𝖠(|𝐷⟩⟨𝐶|)) = sgn𝜂(Tr𝖠((id⊗𝐴) |𝐶⟩⟨𝐶|)) = sgn𝜂

(︁
2−𝑛𝐴

)︁
= 𝐴

where we used that 2−𝑛 ≥ 𝜂. Thus implementing this Uhlmann transformation with inverse poly-
nomial error can be used to implement U to inverse polynomial error. In the case that 𝐴 is not a
unitary circuit, we can leverage the fact that a purification of the mixed state (id⊗𝐴)(|𝐶⟩⟨𝐶|) can
be synthesized in polynomial space; this uses the fact that 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 is closed under purifica-
tion [MY23, Theorem 6.1].

Next we sketch the containment of SuccinctUhlmann1,𝜂 in 𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤. This follows
from an average-case-to-worst-case reduction. Let (1𝑛, 𝐶, �̂�) be a valid SuccinctUhlmann1 in-
stance. Then [MY23, Theorem 7.4], which was also used to prove that DistSuccinctUhlmann1 ∈
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤, implies that there is a polynomial space algorithm 𝐴 such that

td
(︁
(id⊗𝐴)(|𝐶⟩⟨𝐶|), |𝐷⟩⟨𝐷|

)︁
≤ 2−4𝑛 .

We claim that the algorithm 𝐴 actually implements with small worst-case error the canonical
Uhlmann isometry with cutoff 𝜂 corresponding to (|𝐶⟩ , |𝐷⟩). Since the reduced density matrices of
|𝐶⟩ and |𝐷⟩ on the first 𝑛 qubits are identical we can write the Schmidt decompositions of |𝐶⟩ , |𝐷⟩
as

|𝐶⟩ =
∑︁
𝑖

√
𝑝𝑖 |𝑣𝑖⟩ ⊗ |𝑠𝑖⟩ , |𝐷⟩ =

∑︁
𝑖

√
𝑝𝑖 |𝑣𝑖⟩ ⊗ |𝑡𝑖⟩

for some orthonormal bases {|𝑣𝑖⟩}, {|𝑠𝑖⟩}, {|𝑡𝑖⟩}. Imagine measuring the first 𝑛 qubits of (id ⊗
𝐴)(|𝐶⟩⟨𝐶|) and |𝐷⟩⟨𝐷| in the {|𝑣𝑖⟩} basis; then by the convexity of the trace distance we get∑︁

𝑖

𝑝𝑖 td
(︁
𝐴(|𝑠𝑖⟩⟨𝑠𝑖|), |𝑡𝑖⟩⟨𝑡𝑖|

)︁
≤ 2−4𝑛 .
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It must be that for every 𝑖 such that 𝑝𝑖 ≥ 2−2𝑛 we have td
(︁
𝐴(|𝑠𝑖⟩⟨𝑠𝑖|), |𝑡𝑖⟩⟨𝑡𝑖|

)︁
≤ 2−2𝑛; otherwise

the total error would exceed 2−4𝑛. The canonical Uhlmann isometry with cutoff 𝜂 corresponding to
(|𝐶⟩ , |𝐷⟩) can be calculated to be

𝑊 =
∑︁
𝑖:𝑝𝑖≥𝜂

|𝑡𝑖⟩⟨𝑠𝑖| .

Since 𝐴 maps |𝑠𝑖⟩ to |𝑡𝑖⟩ with error 2−2𝑛 for every 𝑖 with 𝑝𝑖 ≥ 𝜂, this implies that 𝐴 approximates
𝑊 with exponentially small error. (Additional care has to be taken to show that 𝐴 coherently maps
|𝑠𝑖⟩ to |𝑡𝑖⟩, but this follows from the fact that 𝐴 maps |𝐶⟩ to |𝐷⟩.)

7.4 Relationship between 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 and 𝖯𝖲𝖯𝖠𝖢𝖤

We now turn our attention to the relationship between 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 and “traditional” worst-
case 𝖯𝖲𝖯𝖠𝖢𝖤, which will again involve the DistSuccinctUhlmann1 problem. We will show that
even though 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 is a class of distributional (average-case) unitary synthesis problems,
it is “harder” than 𝖯𝖲𝖯𝖠𝖢𝖤. At first blush, this seems like it should not be true because the average
case solver is allowed an inverse polynomial error on the distributional input; meaning, if the input
is sampled randomly from instances of a 𝖯𝖲𝖯𝖠𝖢𝖤-complete problem, the average case solver can be
incorrect on a large fraction of them. However, we show that languages in 𝖯𝖲𝖯𝖠𝖢𝖤 are computable
in polynomial time, given oracle access to DistSuccinctUhlmann1. A general definition for a
reduction between a decision problem and average case unitary synthesis problem can easily be
extracted from the proposition.

The key idea is to take advantage of the nonadaptive random-self-reducibility of 𝖯𝖲𝖯𝖠𝖢𝖤. In-
formally, a language satisfies nonadaptive random-self reducibility if there exists a series of fixed
distributions over inputs such any algorithm that decides the language with high probability over
that distribution can be used to decide the language for all instances. More formally, Fortnow
and Feigenbaum showed [FF93, Corollary 4.4] that there exists a 𝖯𝖲𝖯𝖠𝖢𝖤-complete language 𝐿
satisfying the following: there exists a polynomial 𝑚(𝑛) such that for all 𝑛 ∈ ℕ,

(i) there exist 𝑚 = 𝑚(𝑛) polynomial-time computable functions {𝜎𝑖} that each take as input
randomness 𝑟 ∈ {0, 1}𝑚 and an instance 𝑥 ∈ {0, 1}𝑛, and

(ii) there exists a polynomial-time computable function 𝜑 that takes as input randomness 𝑟 ∈
{0, 1}𝑚, an instance 𝑥 ∈ {0, 1}𝑛, and answers 𝑦 ∈ {0, 1}𝑚,

such that for all instances 𝑥 ∈ {0, 1}𝑛

Pr
𝑟
[𝜑(𝑟, 𝑥, 𝑓𝐿(𝑧1), . . . , 𝑓𝐿(𝑧𝑚)) = 𝑓𝐿(𝑥)] ≥

3

4

where 𝑓𝐿 is the characteristic function of 𝐿 and 𝑧𝑖 = 𝜎𝑖(𝑟, 𝑥). Additionally, for all 𝑥1, 𝑥2 ∈ {0, 1}𝑛,
when 𝑟 is chosen uniformly at random, 𝜎𝑖(𝑥1, 𝑟) is identically distributed to 𝜎𝑖(𝑥2, 𝑟).

Theorem 7.15. Let 𝐿 ∈ 𝖯𝖲𝖯𝖠𝖢𝖤. There exists a polynomial time query algorithm 𝐶* = (𝐶*𝑥)𝑥
and a polynomial 𝑝 such that for all 𝑥 ∈ {0, 1}𝑛, all 1/𝑝(𝑛)-error average-case instantiations
𝐶DistSuccinctUhlmann
𝑥 accept with probability at least 2/3 (completeness), and for all 𝑥 ̸∈ 𝐿, all

1/𝑝(𝑛)-error average case instantiations accept with probability at most 1/3 (soundness).
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Proof. At a high level, recall that a language satisfies random-self-reducibility if there exists effi-
ciently sample distributions such that given the answer to 𝑓𝐿 on those instances, the answer to
𝑓𝐿(𝑥) can be determined efficiently. We transform this property into a DistSuccinctUhlmann
instance by having the first circuit (denoted 𝐴) sample the fixed distributions (where the 𝖠 purifies
the system by holding a uniform superposition over the randomness). The second circuit (denoted
𝐵) simply samples the fixed distribution, and also appends the answers for each instance in another
register. Recall that in DistSuccinctUhlmann, we give succinct representations of circuits, so
generating the succinct representation of 𝐵 can be done efficiently (even though implementing 𝐵
would likely take exponential time). It is clear that solving DistSuccinctUhlmann on the distri-
butional input with 0-error and measuring the system would yield an input sampled from the fixed
distribution, together with the corresponding values of 𝑓𝐿, which would be used to get the answer
for the original instance with high probability. We now make this intuition formal.

Let 𝐿 be a 𝖯𝖲𝖯𝖠𝖢𝖤-complete language that is non-adaptively random-self reducible. Then
there exist polynomial-time computable functions 𝜑𝐿 and {𝜎𝐿,𝑖} satisfying the conditions from the
definition of nonadaptive random-self-reducibility above.

Because all 𝜎𝐿,𝑖 run in polynomial time in the length of 𝑥, there is a polynomial time quantum
circuit 𝐴 that prepares the following state

𝐴 |0⟩ =
∑︁

𝑟∈{0,1}𝑚
|𝑟⟩𝖠 ⊗ |𝜎𝐿,1(𝑟, 𝑥), 𝜎𝐿,2(𝑟, 𝑥), . . . , 𝜎𝐿,𝑚(𝑟, 𝑥)⟩𝖡 ⊗ |0

𝑚⟩𝖢 .

As described in the high level description, the 𝖡 register stores the samples from the fixed distri-
butions 𝜎𝐿,𝑖, and the 𝖠 register purifies the system by storing the randomness used to generate
the samples. It is important to note that 𝐴 is polynomial sized, so a polynomial time quantum
algorithm can generate a copy of 𝐴 |0⟩.

Since 𝐿 ∈ 𝖯𝖲𝖯𝖠𝖢𝖤, there exists a polynomial space Turing machine 𝑀𝐿 that decides the lan-
guage. For every input of length 𝑛, this Turing machine can be turned into a succinct representation
of a circuit 𝐶𝐿,𝑛 that implements the characteristic function 𝑓𝐿 for inputs of length 𝑛 via standard
Turing machine to circuit reductions. Therefore there exists an efficient algorithm preparing a
succinct representation of a quantum circuit 𝐵 that prepares the following state

𝐵 |0⟩ =
∑︁

𝑟∈{0,1}𝑚
|𝑟⟩𝖠⊗|𝜎𝐿,1(𝑟, 𝑥), 𝜎𝐿,2(𝑟, 𝑥), . . . , 𝜎𝐿,𝑚(𝑟, 𝑥)⟩𝖡⊗|𝐶𝐿,𝑛(𝜎𝐿,1(𝑟, 𝑥)), . . . , 𝐶𝐿,𝑛(𝜎𝐿,𝑚(𝑟, 𝑥))⟩𝖢 .

In order to fully align with the definitions, the circuits can be padded with an additional ancillary
register initialized to |0⟩ so that the size of 𝖡𝖢 is the same as 𝖠 (because SuccinctUhlmann,
as defined, implements a 𝑛-qubit channel, where the inputs specify 2𝑛-qubit states). Let �̂� be the
classical string (1𝑛, 𝐴, �̂�). Finally, let 𝜑𝐿,𝑥 be a polynomial time quantum circuit implements the
function 𝜑𝐿 when the input 𝑥 is hard coded, i.e.

𝜑𝐿,𝑥 |𝑟, 𝑏1, 𝑏2, . . . , 𝑏𝑚, 𝑙⟩ = |𝑟, 𝑏1, 𝑏2, . . . , 𝑏𝑚, 𝑙 ⊕ 𝜑𝐿(𝑥, 𝑟, 𝑏1, 𝑏2, . . . , 𝑏𝑚)⟩

Then, the following family of polynomial-time query circuits (𝐶*𝑥)𝑥 decides 𝐿.
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Protocol 4. 𝖡𝖰𝖯DistSuccinctUhlmann1 protocol for 𝐿 ∈ 𝖯𝖲𝖯𝖠𝖢𝖤

Input: Classical string 𝑥.

1. Prepare a copy of 𝐴 |0⟩ on registers 𝖠𝖡𝖢.

2. Call the DistSuccinctUhlmann1 oracle on quantum registers 𝖡𝖢 with classical input
�̂�.

3. Let 𝖮 be a single qubit register in the |0⟩ state. Run 𝜑𝐿,𝑥 on registers 𝖠𝖢𝖮.

4. Measure 𝖮 in the computational basis and accept if the measurement outcome is 1.

In order to prove the proposition, we will show that, when instantiated with a 0-error average
case DistSuccinctUhlmann1 oracle, Protocol 4 decides 𝐿 with completeness 3/4 and soundness
1/4. Then by the operational definition of the trace distance, even when instantiated with a 1/12-
error average case solver, the protocol still accepts with probability at least 3/4 − 1/12 = 2/3 if
𝑥 ∈ 𝐿 and at most probability 1/3 if 𝑥 ̸∈ 𝐿.

Assume that the call to DistSuccinctUhlmann in Protocol 4 is instantiated with a 0-error
average case solver. Then we can write the state of registers 𝖠𝖡𝖢𝖮 after step 3 in the protocol as∑︁

𝑟

|𝑟⟩𝖠 ⊗ |𝜎𝐿,1(𝑟, 𝑥), . . . , 𝜎𝐿,1(𝑟, 𝑥)⟩𝖡 ⊗ |𝐶𝐿,𝑛(𝜎𝐿,1(𝑟, 𝑥)), . . . , 𝐶𝐿,𝑛(𝜎𝐿,𝑚(𝑟, 𝑥))⟩𝖢

⊗ |𝜑𝐿(𝑥, 𝑟, 𝐶𝐿,𝑛𝜎𝐿,1(𝑟, 𝑥), . . . , 𝐶𝐿,𝑛𝜎𝐿,𝑚(𝑟, 𝑥))⟩𝖮 (7.8)

The probability that the protocol accepts in step 4 is exactly the probability that, when 𝑟 is
chosen uniformly at random, 𝜑𝐿 outputs the outputs 1 when run on 𝑥, 𝑟 and 𝑓𝐿 applied to each
𝜎𝐿,𝑖(𝑟, 𝑥). By the definition of nonadaptive random-self-reducibility, 𝜑𝐿 is correct with probability
3/4. Thus, when 𝑥 ∈ 𝐿, 𝑓𝐿(𝑥) = 1, so with probability at least 3/4, the protocol accepts. Similarly
if 𝑥 ̸∈ 𝐿, 𝑓𝐿(𝑥) = 0, so with probability at most 1/4 the protocol accepts.

Now, assume that Protocol 4 is instantiated with a 1/12-error average case solver instead. By
the definition of 1/12-error solver and the fact that unitaries preserve trace distance, the state of
the protocol after step 3 is within 1/12 of the state in Equation 7.8, in trace distance. Then, for
any measurement 𝑀 , the probability that 𝑀 accepts on the protocol state is within 1/12 of the
probability that 𝑀 accepts on the state in Equation 7.8. So if 𝑥 ∈ 𝐿, the protocol accepts with
probability at least 2/3, and if 𝑥 ̸∈ 𝐿, the protocol accepts with probability at most 1/3.

In this section, we have used the random self-reducibility of 𝖯𝖲𝖯𝖠𝖢𝖤 to relate 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤
and 𝖯𝖲𝖯𝖠𝖢𝖤. It is natural to wonder whether a similar self-reducibility property also holds for
𝗎𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 itself, and in particular whether SuccinctUhlmann might be randomly self re-
ducible as a unitary synthesis problem:

Open Problem 16. Is SuccinctUhlmann randomly self reducible (in some suitably defined
sense), in analogy to randomly self-reducible 𝖯𝖲𝖯𝖠𝖢𝖤-complete problems?
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Part III

Uhlmann Transformation Problem: Applications

8 Applications to Quantum Cryptography

In this section, we connect the Uhlmann Transformation Problem to concepts in quantum cryptogra-
phy. We first discuss an equivalence between the existence of quantum commitment schemes and the
hardness of the Uhlmann Transformation Problem. Then, we relate the problem of breaking (a class
of) one-way state generators, a primitive recently introduced by Morimae and Yamakawa [MY22b],
to solving Uhlmann𝜅 for small 𝜅 ≪ 1 (whereas most of the other results we discuss in this pa-
per concern Uhlmann𝜅 for 𝜅 negligibly close to 1). Finally, we show that any falsifiable quantum
cryptographic assumption must imply that DistSuccinctUhlmann cannot be solved in polyno-
mial time. Put in other words, this essentially means that any security definition that can be
phrased in terms of a security game is either information-theoretically realizable or can be broken
in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤.

8.1 Quantum commitment schemes

We first review the notion of quantum commitment schemes, and in particular the notion of a
canonical quantum bit commitment scheme which is a non-interactive protocol for bit commitment
involving quantum communication. Yan [Yan22] showed that a general interactive quantum com-
mitment scheme can always be compiled to a non-interactive commitment scheme with the same
security properties. Thus without loss of generality we focus on such non-interactive schemes.

Definition 8.1 (Canonical quantum bit commitment scheme [Yan22]). A canonical non-interactive
quantum bit commitment scheme is given by a uniform family of unitary quantum circuits
{𝐶𝜆,𝑏}𝜆∈ℕ,𝑏∈{0,1} where for each 𝜆, the circuits 𝐶𝜆,0, 𝐶𝜆,1 act on 𝑝𝑜𝑙𝑦(𝜆) qubits and output two
registers 𝖢,𝖱. The scheme has two phases:

1. In the commit stage, to commit to a bit 𝑏 ∈ {0, 1}, the sender prepares the state |𝜓𝜆,𝑏⟩𝖱𝖢 =
𝐶𝜆,𝑏 |0 · · · 0⟩, and then sends the “commitment register” 𝖢 to the receiver.

2. In the reveal stage, the sender announces the bit 𝑏 and sends the “reveal register” 𝖱 to the
receiver. The receiver then accepts if performing the inverse unitary 𝐶†𝜆,𝑏 on registers 𝖢,𝖱 and
measuring in the computational basis yields the all zeroes state.

The security of a canonical commitment scheme consists of two parts, hiding and binding, which
we define next.

Definition 8.2 (Hiding property of commitment scheme). Let 𝜖(𝜆) denote a function. We say
that a commitment scheme {𝐶𝜆,𝑏}𝜆,𝑏 satisfies 𝜖-computational (resp. 𝜖-statistical) hiding if for all
non-uniform polynomial-time algorithms (resp. for non-uniform algorithms) 𝐴 = (𝐴𝜆)𝜆 that take as
input the commitment register 𝖢 of the scheme {𝐶𝜆,𝑏}𝜆,𝑏, the following holds for sufficiently large 𝜆:⃒⃒⃒

Pr
[︁
𝐴𝜆(𝜌𝜆,0) = 1

]︁
− Pr

[︁
𝐴𝜆(𝜌𝜆,1) = 1

]︁⃒⃒⃒
≤ 𝜖(𝜆) . (8.1)
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Here, 𝜌𝜆,𝑏 denotes the reduced density matrix of |𝜓𝜆,𝑏⟩ on register 𝖢. If 𝜖 is a negligible function
of 𝜆 then we simply say that the scheme satisfies strong computational (resp. statistical) hiding. If
𝜖(𝜆) ≤ 1 − 1

𝑝(𝜆) for some polynomial 𝑝(𝜆) we say it satisfies weak computational (resp. statistical)
hiding.

We call the left hand side of Equation (8.1) the advantage of the family of adversaries 𝐴 = (𝐴𝜆)𝜆.

Definition 8.3 (Honest binding property of commitment scheme). Let 𝜖(𝜆) denote a function.
We say that a commitment scheme {𝐶𝜆,𝑏}𝜆,𝑏 satisfies 𝜖-computational (resp. 𝜖-statistical) honest
binding if for all non-uniform polynomial-time algorithms (resp. for all non-uniform algorithms)
𝐴 = (𝐴𝜆)𝜆 that take as input the reveal register 𝖱 the following holds for sufficiently large 𝜆:

F
(︁(︁
𝐴𝜆 ⊗ id𝖢

)︁
(𝜓𝜆,0), 𝜓𝜆,1

)︁
≤ 𝜖(𝜆) , (8.2)

where 𝜓𝜆,𝑏 = |𝜓𝜆,𝑏⟩⟨𝜓𝜆,𝑏|𝖱𝖢.
If 𝜖 is a negligible function of 𝜆 then we simply say that the scheme satisfies strong computational

(resp. statistical) honest binding. Otherwise if 𝜖(𝜆) ≤ 1− 1
𝑝(𝜆) for some polynomial 𝑝(·) we say that

it satisfies weak computational (resp. statistical) honest binding.

Remark 8.4. Definition 8.3 is called honest binding because it requires the binding property only
for the states |𝜓𝜆,𝑏⟩ that are produced if the commit phase is executed honestly. We refer to [Yan22]
for a discussion of this definition and stronger versions thereof. Throughout this paper, we will only
consider the honest binding property, so we will just drop the term “honest” for brevity.

Remark 8.5. The definitions of hiding and binding can easily be revised to include adversaries
that have quantum side information, but for simplicity we focus on adversaries take classical side
information (by way of the non-uniformity of the adversary’s circuits). This would require us to
consider unitary complexity classes with quantum advice, e.g., 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗊𝗉𝗈𝗅𝗒. We leave this
for future work.

Before discussing the connection between the Uhlmann Transformation Problem and commit-
ment schemes, we review several basic facts about them. First, information-theoretically secure
quantum commitments do not exist:

Theorem 8.6 (Impossibility of unconditionally secure quantum commitments [May97, LC98]).
There is no quantum commitment scheme that is both strong statistical hiding and strong statistical
binding.

Thus at least one of the hiding or binding must be computationally secure. There are two com-
monly considered flavors of quantum commitments: one with statistical hiding and computational
binding, and the other with statistical binding and computational hiding. A remarkable fact about
canonical quantum commitments is that there is a generic blackbox reduction between these two
flavors [CLS01, Yan22, GJMZ23, HMY23].

Commitment flavor switching. The reduction works as follows. Let {𝐶𝜆,𝑏}𝜆,𝑏 denote a com-
mitment scheme. For every 𝜆 ∈ ℕ and 𝑏 ∈ {0, 1}, define the circuit 𝐶 ′𝜆,𝑏 that acts on one more qubit
than 𝐶𝜆,𝑏 does, and produces the following state:

|𝜓′𝜆,𝑏⟩𝖢′𝖱′ := 𝐶 ′𝜆,𝑏 |0 · · · 0⟩ =
1√
2

(︁
|0⟩𝖠 |𝜓𝜆,0⟩𝖱𝖢 + (−1)𝑏 |1⟩𝖠 |𝜓𝜆,1⟩𝖱𝖢

)︁
,
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where |𝜓𝜆,𝑏⟩ = 𝐶𝜆,𝑏 |0 · · · 0⟩ and the registers are 𝖢′ = 𝖱𝖠 and 𝖱′ = 𝖢 (i.e., the reveal and commit-
ment registers are swapped, and the commitment register has an extra qubit). Clearly, the circuit
𝐶 ′𝜆,𝑏 is polynomial-size if 𝐶𝜆,𝑏 is.

Proposition 8.7 ([HMY23, Theorem 7]). Let 𝜖(𝑛), 𝛿(𝑛) be functions. If {𝐶𝜆,𝑏}𝜆,𝑏 is an 𝜖-
computationally (resp. statistical) hiding and 𝛿-statistical (resp. computational) binding commit-
ment scheme, then {𝐶 ′𝜆,𝑏}𝜆,𝑏 is a

√
𝛿-statistical (resp. computational) hiding and 𝜖-computationally

(resp. statistical) binding commitment scheme.

Hardness amplification for commitments. In Section 6 we proved a hardness amplification
result for the Uhlmann transformation problem (Theorem 6.8). The key lemma in the proof of
this result, Lemma 6.9, also implies that the computational binding property of a commitment
scheme can also be amplified: roughly speaking, if there is a commitment scheme where it is hard
for a malicious sender to map the 0-commitment to have fidelity more than 1 − 1/𝑝(𝜆) with the
1-commitment for some polynomial 𝑝(𝜆), then there exists another commitment scheme where
it is hard for an adversary to map the 0-commitment to have more than 1

𝑞(𝜆) overlap with the
1-commitment for all polynomials 𝑞(𝜆). Flavor switching (Proposition 8.7) then implies hardness
amplification for the hiding property (i.e., if it is somewhat hard to distinguish between commitments
to 0 and 1, there is another commitment scheme for which it is much harder). This answers an open
question of [Yan22], who asked whether hardness amplification for commitments is possible.

Theorem 8.8 (Amplification of quantum commitment schemes). The following are equivalent:

1. Strong statistical hiding and weak computational binding commitment schemes exist.

2. Strong statistical binding and weak computational hiding commitment schemes exist.

3. For every polynomial 𝑝(𝜆), strong statistical hiding and 1
𝑝(𝜆) -computational binding commit-

ment schemes exist.

4. For every polynomial 𝑝(𝜆), strong statistical binding and 1
𝑝(𝜆) -computational hiding commit-

ment schemes exist.

Proof. Proposition 8.7 shows that (2) =⇒ (1) and (3) =⇒ (4). Furthermore, (4) =⇒ (2) is
trivial by definition of binding. Thus it only remains to prove (1) =⇒ (3).

Let 𝐶 := {𝐶𝜆,𝑏 }𝜆,𝑏 be a strong statistical hiding, weak computational binding commitment
scheme with corresponding commitment states {|𝜓𝜆,𝑏⟩}, and let 𝑝(𝜆) be some polynomial. There
exists a polynomial 𝑞(𝜆) such that for all non-uniform polynomial size quantum families of circuits
{𝑅𝜆 }𝜆 and for all sufficiently large 𝜆 it holds that

F
(︁(︁
𝑅𝜆 ⊗ id𝖢

)︁
(𝜓𝜆,0), 𝜓𝜆,1

)︁
≤ 1− 1

𝑞(𝜆)
.

Let 𝜈(𝜆) = 1/𝑝(𝜆). There exist polynomials 𝑘(𝜆), 𝑇 (𝜆) such that

1−

(︃
2(1− 𝜈(𝜆))𝑇 (𝜆) + 32𝑇 (𝜆)√︀

𝑘(𝜆)

)︃
≥ 1− 1

𝑞(𝜆)

for all sufficiently large 𝜆. For notational brevity we write 𝑘 = 𝑘(𝜆), 𝑇 = 𝑇 (𝜆), 𝜈 = 𝜈(𝜆).
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Consider the amplified commitment scheme 𝐶⊗𝑘 := {𝐶⊗𝑘(𝜆)𝜆,𝑏 }
𝜆,𝑏

. This commitment scheme
is clearly polynomial-time and uniform. Applying the contrapositive of Lemma 6.9 with the cir-
cuits 𝐶,𝐷 of the lemma set to 𝐶𝜆,0, 𝐶𝜆,1 respectively, it holds for all non-uniform polynomial-time
algorithms {𝐴𝜆 }𝜆, for all sufficiently large 𝜆,

F
(︁(︁
𝐴𝜆 ⊗ id𝖢

)︁
(𝜓⊗𝑘𝜆,0), 𝜓

⊗𝑘
𝜆,1

)︁
≤ 𝜈 =

1

𝑝(𝜆)

where the algorithm 𝐴𝜆 acts only on the part of the state |𝜓𝜆,𝑏⟩⊗𝑘 kept by the sender after the
commitment phase. Thus the original commitment 𝐶 is 1

𝑝(·) -computational binding.
The amplified commitment 𝐶⊗𝑘 is statistically hiding since by definition 𝜌𝜆,0 and 𝜌𝜆,1 (the

reduced density matrices of the original commitment on register 𝖢) have trace distance at most
negl(𝜆) for some negligible function negl. Thus 𝜌⊗𝑘𝜆,0 and 𝜌⊗𝑘𝜆,1 (the reduced density matrices of the
amplified commitment) have trace distance at most negl(𝜆)𝑘(𝜆), which is still a negligible function
as 𝑘(𝜆) is a polynomial.

Thus the amplified commitment scheme 𝐶⊗𝑘 has statistical hiding and 1
𝑝(·) -computational bind-

ing, as required. This shows that (1) =⇒ (3) and thus concludes the proof of the theorem.

Note that Theorem 8.8 is just shy of showing an equivalence between weak commitments and the
standard notion of commitments in cryptography, where the adversaries can only break the hiding
or binding properties with negligible advantage. To prove this stronger statement, we would need
to show that weak commitments implies the existence of a single commitment scheme for which an
adversary cannot break the binding property with more than 1/𝑝(𝜆) for all polynomials 𝑝 (whereas
Theorem 8.8 implies the existence of a commitment scheme that depends on the polynomial 𝑝). We
conjecture that this stronger amplification holds:

Conjecture 8.9. Strong statistical hiding and weak computational binding commitment schemes
exist if and only if strong statistical hiding and strong computational binding commitment schemes
exist.

We note that this conjecture would essentially be implied by Open Problem 11, in the same way in
which Theorem 8.8 is implied by Theorem 6.8.

Commitments and the Uhlmann Transformation Problem. The main result of this section
is a close connection between the existence of commitment schemes and the complexity-theoretic
assumption that DistUhlmann /∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒.

Theorem 8.10. If for all negligible functions 𝜈, DistUhlmann1−𝜈 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒, then
strong statistical hiding, weak computational binding commitments as well as strong statistical bind-
ing, weak computational hiding commitments do not exist.

On the other hand, suppose there exists a negligible function 𝜇 such that

(i) DistUhlmann1−𝜇 /∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒, and

(ii) there exists a uniform polynomial-time computable18 family 𝑋 = {𝑥𝜆}𝜆∈ℕ of Uhlmann1−𝜇 in-
stances satisfying the following: there exists a polynomial 𝑞(𝜆) such that for every non-uniform

18By the uniform polynomial-time computability of 𝑋 we mean the following: there exists a uniform polynomial-
time quantum algorithm that on input 1𝜆 outputs 𝑥𝜆.
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polynomial-time algorithm 𝐴 = (𝐴𝜆)𝜆 where 𝐴 implements the Uhlmann transformation cor-
respond to 𝑥𝜆 with error greater than 1/𝑞(𝜆) for all sufficiently large 𝜆.

Then there exist quantum commitments with strong statistical hiding and weak computational binding
as well as quantum commitments with weak computational hiding and strong statistical binding.

We note that in the second part of Theorem 8.10, technically speaking the assumption that
DistUhlmann1−𝜇 /∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒 is implied by the assumption about the existence of
the uniform family 𝑋 of “hard” instances. However we state it as such in order to highlight
the close connection between quantum commitments and whether DistUhlmann1−negl is in
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒.

We also note that using hardness amplification for commitments (Theorem 8.8), the conclusion
of the second part of Theorem 8.10 can be revised to imply the existence of quantum commitments
where the computational hiding or computational binding property holds with inverse polynomial
security.

Proof of Theorem 8.10. We begin with the first part of the theorem. Suppose for contradiction that
DistUhlmann1−𝜈 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒 for all negligible functions 𝜈 and there exists a strong
statistical hiding and weak computational binding commitment scheme 𝐶 = {𝐶𝜆,𝑏} (the proof for
the other flavor follows from Proposition 8.7). Let 𝑝(𝜆) denote the polynomial from the weak binding
property of 𝐶, and let 𝑛(𝜆) denote the number of qubits of the commitment on security parameter
𝜆. The strong statistical hiding property implies that for some negligible function 𝜖(𝜆) we have

F(𝜌𝜆,0, 𝜌𝜆,1) ≥ 1− 𝜖(𝜆) ,

where 𝜌𝜆,𝑏 is the reduced density matrix of the commitment state |𝜓𝜆,𝑏⟩ = 𝐶𝜆,𝑏 |0 · · · 0⟩ on register
𝖢 (the register sent by the sender in the commitment phase). Since 𝐶𝜆,𝑏 are quantum polynomial
size circuits, it follows that

(︁
(1𝑛(𝜆), 𝐶𝜆,0, 𝐶𝜆,1), |𝜓𝜆,0⟩

)︁
is a valid instance of DistUhlmann1−𝜖 (by

padding with zeroes we can assume that {𝐶𝜆,𝑏}𝑏∈{0,1} output 2𝑛(𝜆) qubits).
Let 𝛿(𝜆) = 1

3𝑝(𝜆) . By the assumption that DistUhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒 we get that
there is a (non-uniform) family of poly(𝜆)-size circuits 𝐴𝜆 only acting on register 𝖱 for which

td
(︁(︁
𝐴𝜆 ⊗ id𝖢

)︁
(𝜓𝜆,0) , 𝜓𝜆,0

)︁
≤ 𝛿(𝜆) .

By Fuchs-van de Graaf we get

F
(︁(︁
𝐴𝜆 ⊗ id𝖢

)︁
(𝜓𝜆,0) , 𝜓𝜆,0

)︁
≥ 1− 2𝛿(𝜆) > 1− 1

𝑝(𝜆)
,

which breaks the (1 − 1/𝑝)-computational binding property of the commitment scheme, a contra-
diction.

We now prove the second part of the theorem. Let 𝑋 = {𝑥𝜆 }𝜆∈ℕ be a family of Uhlmann1−𝜇
instances satisfying the premise of the second part of the theorem. For each 𝜆, we have 𝑥𝜆 =
(1𝑛(𝜆), 𝐷𝜆, 𝐸𝜆) for some polynomial 𝑛(𝜆) (since 𝑋 is uniform polynomial-time computable). Con-
sider the commitment scheme defined by𝑋, i.e. 𝐶 := {𝐶𝜆,𝑏 }𝜆,𝑏 where for each 𝜆, 𝐶𝜆,0 := 𝐷𝜆, 𝐶𝜆,1 :=

𝐸𝜆. By assumption, we have that {𝐶𝜆,𝑏 }𝜆,𝑏 is a uniform polynomial-size family of circuits each
acting on 2𝑛(𝜆) qubits. Since 𝑥𝜆 is a valid Uhlmann1−𝜇 instance for all 𝜆, the reduced density

85



matrices 𝜌𝜆,0 and 𝜌𝜆,0 have fidelity at least 1−𝜇(𝜆) for some negligible function 𝜇; applying Fuchs-
van de Graaf their trace distance is at most 𝑂(

√︀
𝜇(𝜆)), which is still a negligible function. Thus

{𝐶𝜆,𝑏 }𝜆,𝑏 satisfies strong statistical hiding.
To show the weak computational binding property, by assumption there exists a polynomial

𝑝(𝜆) such that for all non-uniform polynomial time algorithms 𝐴 = (𝐴𝜆)𝜆 and for all sufficiently
large 𝜆 we have

td
(︁(︁
𝐴𝜆 ⊗ id𝖢

)︁
(𝜓𝜆,0) , 𝜓𝜆,1

)︁
≥ 1

𝑞(𝜆)
.

Applying Fuchs-van de Graaf implies that for all 𝜆,

F
(︁(︁
𝐴𝜆 ⊗ id𝖢

)︁
(𝜓𝜆,0) , 𝜓𝜆,1

)︁
≤ 1− 1

𝑞(𝜆)2
.

Thus the commitment scheme {𝐶𝜆,𝑏 }𝜆,𝑏 satisfies (1− 1
𝑞(𝜆)2

)-computational binding, and thus weak
binding, as required.

As mentioned before, the proof for the other flavor follows from Proposition 8.7. This concludes
the proof of the theorem.

8.2 Unclonable state generators

We introduce the notion of unclonable state generators, which abstractly captures the security of
unclonable cryptographic primitives such as quantum money [Wie83, AC12], and quantum copy-
protection [ALL+21, CLLZ21]. Intuitively, an unclonable state generator is an efficient algorithm
mapping a classical key 𝑘 to a quantum state |𝜑𝑘⟩ that cannot be efficiently cloned without the key
𝑘. More formally:

Definition 8.11 (State generator). A (pure-state) state generator 𝐺 = (𝐺𝜆)𝜆 is a quantum
polynomial-time algorithm that for all 𝜆 ∈ ℕ takes as input a computational basis state |𝑘⟩ with
𝑘 ∈ {0, 1}𝜆 and outputs a pure state |𝜑𝑘⟩.

Definition 8.12 (Unclonable state generator). Let 𝐺 = (𝐺𝜆)𝜆 be a state generator. Let 𝑡(𝜆) be a
function. We say that 𝐺 is a statistical (resp. computational) 𝑡-copy unclonable state generator if
for all computationally unbounded (resp. polynomial-time) non-uniform algorithms 𝐴 = (𝐴𝜆)𝜆,

Pr

(︂
measuring 𝜌 with |𝜑𝑘⟩⟨𝜑𝑘|⊗𝑡(𝜆)+1 accepts :

𝑘 ← {0, 1}𝜆
𝜌← 𝐴𝜆(𝐺𝜆(𝑘)

⊗𝑡(𝜆))

)︂
≤ negl(𝜆) .

Equivalently, this can also be written as

𝔼
𝑘←{0,1}𝜆

𝜌←𝐴𝜆(𝐺𝜆(𝑘)⊗𝑡(𝜆))

Tr(|𝜑𝑘⟩⟨𝜑𝑘|⊗𝑡(𝜆)+1 𝜌) ≤ negl(𝜆) .

In this section, we give a complexity upper bound on breaking a natural class of unclonable state
generators: either an unclonable state generator from this class is information-theoretically secure,
or it can be efficiently broken with an oracle to Uhlmann𝜅 for small 𝜅≪ 1.

Before we prove this result we first discuss the relationship between unclonable state generators
and another primitive known as one-way state generators.
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8.2.1 Relation with one-way state generators

Morimae and Yamakawa [MY22b] introduced one-way state generators (OWSGs) as a quantum
analogue of one-way functions (OWFs). Intuitively speaking, an OWSG is an efficient algorithm
that maps a classical key 𝑘 to a quantum state |𝜑𝑘⟩ that is, in a sense, hard to invert. OWSGs
provide another natural way to abstractly capture the security of quantum cryptographic primitives
such as pseudorandom states [JLS18] and quantum money schemes [Wie83, Aar09].

We present the original definition of a OWSG, given by [MY22b]. There are more general
definitions given by [MY22a], but we stick with the simpler one for now.

Definition 8.13 (One-way state generator). Let 𝐺 = (𝐺𝜆)𝜆 be a state generator. Let 𝑡(𝜆) be
a function. We say that 𝐺 is a statistical (resp. computational) 𝑡-copy secure OWSG if for all
computationally unbounded (resp. polynomial-time) non-uniform algorithms 𝐴 = (𝐴𝜆)𝜆,

Pr

(︂
measuring |𝜑𝑘⟩ with |𝜑𝑘′⟩⟨𝜑𝑘′ | accepts :

𝑘 ← {0, 1}𝜆
𝑘′ ← 𝐴𝜆(𝐺𝜆(𝑘)

⊗𝑡(𝜆))

)︂
≤ negl(𝜆) .

Equivalently, this can also be written as

𝔼
𝑘←{0,1}𝜆

𝑘′←𝐴𝜆(𝐺𝜆(𝑘)⊗𝑡(𝜆))

| ⟨𝜑𝑘′ |𝜑𝑘⟩ |2 ≤ negl(𝜆) . (8.3)

Recent work by Khurana and Tomer [KT23] shows that if there exists a 𝑡-copy secure OWSG
𝐺 for a sufficiently large polynomial 𝑡(𝜆), then there exist quantum bit commitment schemes. Put
another way, the complexity of breaking 𝑡-copy secure OWSGs for sufficiently large 𝑡(𝜆) can be
efficiently reduced to the complexity of Uhlmann1−negl.

We now compare unclonable state generators with OWSGs.

Proposition 8.14. Let 𝑡 = 𝑂(1) be a constant independent of the security parameter 𝜆. Let 𝐺(𝑘)
be a quantum polynomial-time algorithm that outputs a pure state |𝜑𝑘⟩. If 𝐺 is a 𝑡-copy unclonable
state generator, then it is a 𝑡-copy secure OWSG.

Proof. Suppose that there was an OWSG inverter 𝐴 that given 𝑡-copies of |𝜑𝑘⟩, outputs a key 𝑘′ such
that | ⟨𝜑𝑘′ |𝜑𝑘⟩ |2 is nonnegligible with nonnegligible probability. Using this inverter 𝐴, an adversary
can efficiently generate the state |𝜑𝑘′⟩⊗𝑡+1 with nonnegligible probability, and |⟨𝜑𝑘′ | 𝜑𝑘⟩|2(𝑡+1) is
still non-negligible (because 𝑡 is constant). This violates the unclonability security condition.

When 𝑡 can grow with 𝑡(𝜆), the connection between OWSG security and unclonability is less
clear: it is not clear whether 𝑡-copy secure OWSGs imply 𝑡-copy secure unclonable state generators
or vice versa.

Thus it is not clear that the results of Khurana and Tomer [KT23] can be extended to show
that breaking unclonable state generators efficiently reduces to Uhlmann.

8.2.2 Breaking a class of unclonable state generators

We identify a natural class of state generators, called real-valued, clean-output state generators.
Intuitively, clean-output means that the state |𝜑𝑘⟩ can be computed from 𝑘 by a unitary that
returns all its ancilla qubits to the zero-state.
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Definition 8.15 (Real-valued, clean-output state generator). A state generator 𝐺 is clean-output
if for all 𝜆 the generator 𝐺𝜆 is a unitary such that

|𝑘⟩ ⊗ |0 · · · 0⟩ ↦→ |𝑘⟩ ⊗ |𝜑𝑘⟩ ⊗ |0 · · · 0⟩

where |0 · · · 0⟩ denotes some number of ancilla zeroes. Furthermore, we say that 𝐺 is real-valued if
for all 𝜆 and for all 𝑘 ∈ {0, 1}𝜆, the output state |𝜑𝑘⟩ is a real-valued vector when expanded in the
computational basis.

We claim that real-valued, clean-output state generators capture a natural class of unclonable
and one-way state generators; here are two well-known examples.

1. Pseudorandom states: The canonical constructions of pseudorandom state generators [JLS18,
BS19] map keys 𝑘 to states of the form

|𝜑𝑘⟩ = 2−𝑛/2
∑︁

𝑥∈{0,1}𝑛
(−1)𝑓𝑘(𝑥) |𝑥⟩ ,

where {𝑓𝑘 : {0, 1}𝑛 → {0, 1}}𝑘 is a post-quantum pseudorandom function family. Since the
𝑓𝑘 are computable by deterministic classical circuits, the states |𝜑𝑘⟩ are cleanly computable.
Furthermore they are clearly real-valued as the amplitudes are all ±2−𝑛/2.

2. Quantum subspace states: The constructions of quantum money from [AC12, Zha21] and
other unclonable primitives [CLLZ21] make use of generators that produce subspace states
(and their generalizations called coset states). A subspace state generator maps a key 𝑘,
which is interpreted as a description of linearly independent generators of a random subspace
𝐴 ⊂ 𝔽𝑛2 of dimension 𝑛/2, to the following state:

|𝜑𝑘⟩ = 2−𝑛/4
∑︁
𝑥∈𝐴
|𝑥⟩ .

It is easy to see that this state can be cleanly computed in polynomial time given the key 𝑘,
and is clearly real-valued.

Remark 8.16. We note that our proofs will only require a weaker condition than “real-valued”: we
will only need that the inner product ⟨𝜑𝑘|𝜑𝑘′⟩ is real for all choices of 𝑘 and 𝑘′. However, as we have
seen above, real-valued state generators are a natural class, so we stick to this stronger requirement
for simplicity.
We show that for real-valued, clean-output state generators, 𝑡-copy unclonability implies OWSG
security for any number of copies 𝑡.

Proposition 8.17. Let 𝑡(𝜆) be a polynomial. If 𝐺 is a real-valued, clean-output statistical (resp.
computational) 𝑡-copy unclonable state generator then it is a statistical (resp. computational) 𝑡-copy
OWSG.

Proof. Suppose for contradiction that a 𝑡-copy unclonable state generator 𝐺 did not have 𝑡-copy
OWSG security. Let 𝐴 = (𝐴𝜆)𝜆 denote an adversary that breaks OWSG security of 𝐺. Let 𝐴𝜆
denote a unitary dilation of 𝐴𝜆. We can write its behavior as

𝐴𝜆 |𝜑𝑘⟩⊗𝑡(𝜆) ⊗ |0⟩ =
∑︁
𝑘′

√
𝜖𝑘,𝑘′ |aux𝑘,𝑘′⟩ ⊗ |𝑘′⟩
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for some auxiliary states {|aux𝑘,𝑘′⟩}𝑘,𝑘′∈{0,1}𝜆 and for every 𝑘 ∈ {0, 1}𝜆 some probabilities
{𝜖𝑘,𝑘′}𝑘′∈{0,1}𝜆 . The condition that 𝐴 breaks OWSG security means that there exists a polyno-
mial 𝑝(𝜆) such that

2−𝜆
∑︁
𝑘,𝑘′

𝜖𝑘,𝑘′ |⟨𝜑𝑘 | 𝜑𝑘′⟩|2 ≥ 1/𝑝(𝜆)

for infinitely many 𝜆. In words, the left-hand side computes the expected overlap |⟨𝜑𝑘 | 𝜑𝑘′⟩|2
when 𝑘 is sampled uniformly at random (which is why there is a normalisation 2−𝜆) and then 𝑘′

is sampled according to the distribution {𝜖𝑘,𝑘′}𝑘′ , which is exactly the quantity on the l.h.s. of
Equation (8.3). Then consider the unitary 𝑉 that first applies 𝐴; then controlled on the state |𝑘′⟩,
using the generator 𝐺 twice, prepares |𝜑𝑘′⟩⊗2 in an ancilla register; and finally applies the inverse
unitary 𝐴†. Note that the unitary 𝑉 is efficient if 𝐴 is efficient. Then consider applying 𝑉 to 𝑡(𝜆)
copies of |𝜑𝑘⟩ and some ancillas:

𝑉 |𝜑𝑘⟩⊗𝑡(𝜆) ⊗ |0⟩ =
∑︁
𝑘′

√
𝜖𝑘,𝑘′ 𝐴

†
𝜆

(︁
|aux𝑘,𝑘′⟩ ⊗ |𝑘′⟩

)︁
⊗ |𝜑𝑘′⟩⊗2 .

We now calculate the average overlap between this state and |𝜑𝑘⟩⊗𝑡(𝜆) ⊗ |0⟩ ⊗ |𝜑𝑘⟩⊗2:

2−𝜆
∑︁
𝑘

| ⟨𝜑𝑘|⊗𝑡(𝜆) ⊗ ⟨0| ⊗ ⟨𝜑𝑘|⊗2 𝑉 |𝜑𝑘⟩⊗𝑡(𝜆) ⊗ |0⟩ |2

= 2−𝜆
∑︁
𝑘

⃒⃒⃒(︁∑︁
𝑘′

√
𝜖𝑘,𝑘′ ⟨aux𝑘,𝑘′ | ⊗ ⟨𝑘′| ⊗ ⟨𝜑𝑘|⊗2

)︁(︁∑︁
𝑘′′

√
𝜖𝑘,𝑘′′ |aux𝑘,𝑘′′⟩ ⊗ |𝑘′′⟩ ⊗ |𝜑𝑘′′⟩⊗2

)︁⃒⃒⃒2
= 2−𝜆

∑︁
𝑘

⃒⃒⃒∑︁
𝑘′

𝜖𝑘,𝑘′⟨𝜑𝑘 | 𝜑𝑘′⟩2
⃒⃒⃒2

≥
⃒⃒⃒
2−𝜆

∑︁
𝑘,𝑘′

𝜖𝑘,𝑘′ |⟨𝜑𝑘 | 𝜑𝑘′⟩|2
⃒⃒⃒2
≥ 1/𝑝(𝜆)2 ,

where in the last line we used Cauchy-Schwarz and the premise that 𝐺 is real-valued so that
⟨𝜑𝑘 | 𝜑𝑘′⟩2 = |⟨𝜑𝑘 | 𝜑𝑘′⟩|2.

In other words, the unitary 𝑉 maps 𝑡(𝜆) copies of |𝜑𝑘⟩ to have inverse polynomial overlap with
𝑡(𝜆) + 2 copies of |𝜑𝑘⟩, on average over the key 𝑘. Since 𝑉 is efficient if 𝐴 is efficient, this breaks
the 𝑡-copy unclonability security of 𝐺.

We now give an upper bound on the complexity of breaking real-valued, clean-output state
generators; we essentially show that either they have information-theoretic OWSG security, or can
be efficiently cloned if DistUhlmann𝜅 is efficiently solvable for inverse polynomial 𝜅.

Theorem 8.18. Suppose for all polynomials 𝑞(𝑛) there exists a non-uniform polynomial-time al-
gorithm 𝑀 = (𝑀𝑥)𝑥 and a polynomial 𝑟(𝑛) such that for all valid Uhlmann1/𝑞(𝑛) instances
𝑥 = (1𝑛, 𝐶,𝐷) we have

F
(︁
(id⊗𝑀𝑥)(|𝐶⟩⟨𝐶|), |𝐷⟩⟨𝐷|

)︁
≥ 1/𝑟(𝑛) .

Then for all real-valued, clean-output state generators 𝐺 and for all polynomials 𝑡(𝜆) either:

• 𝐺 is a 𝑡-copy statistical OWSG, or

• the 𝑡-copy unclonability security of 𝐺 can be broken in polynomial time.
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The reader may wonder why the assumption of the theorem is not written as
DistUhlmann1/𝑝(𝑛) ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒. This is an illustration of how the (distributional)
Uhlmann𝜅 problem differs depending on 𝜅. When 𝜅 is very close to 1, then Proposition 5.8 shows
that being able to locally map |𝐶⟩ to have fidelity approximately 𝜅 with |𝐷⟩ implies that one can
solve DistUhlmann𝜅 with small error – and vice versa. However, when 𝜅 is small Proposition 5.8
no longer gives meaningful bounds.

Proof. For simplicity we present the proof for 𝑡(𝜆) = 1; adapting the proof to general polynomials
𝑡(𝜆) is straightforward. Suppose the state generator 𝐺 does not satisfy 1-copy statistical security.
Then there exists a (possibly computationally unbounded) algorithm 𝐴 = (𝐴𝜆)𝜆 and a polynomial
𝑝(𝜆) such that for infinitely many 𝜆:

Pr

(︂
measuring |𝜑𝑘⟩ with |𝜑𝑘′⟩⟨𝜑𝑘′ | accepts : 𝑘 ← {0, 1}𝜆

𝑘′ ← 𝐴𝜆(𝐺𝜆(𝑘))

)︂
≥ 1/𝑝(𝜆) .

By the assumption that 𝐺 computes its outputs cleanly, there exist polynomial-sized quantum
circuits 𝐶,𝐷 that prepare the following states:

|𝐶⟩𝖪𝖲𝖪′𝖳 := 2−𝜆/2
∑︁

𝑘∈{0,1}𝜆
|𝑘⟩𝖪 ⊗ |𝜑𝑘⟩𝖲 ⊗ |0⟩𝖪′ ⊗ |0⟩𝖳

|𝐷⟩𝖪𝖲𝖪′𝖳 := 2−𝜆/2
∑︁

𝑘∈{0,1}𝜆
|𝑘⟩𝖪 ⊗ |𝜑𝑘⟩𝖲 ⊗ |0⟩𝖪′ ⊗ |𝜑𝑘⟩⊗2𝖳 .

Let 𝜌, 𝜎 denote the reduced density matrices of |𝐶⟩ , |𝐷⟩ respectively on register 𝖪. We now show
that F(𝜌, 𝜎) ≥ 1/𝑝(𝜆) by exhibiting a unitary 𝑉 acting on register 𝖲𝖪′𝖳 such that

F(𝜌, 𝜎) ≥ | ⟨𝐷| (id𝖪 ⊗ 𝑉𝖲𝖪′𝖳) |𝐶⟩ |2 ≥ 1/𝑝(𝜆)2 . (8.4)

Consider the unitary purification 𝐴 of the adversary 𝐴; without loss of generality it can be expressed
as follows. For all 𝑘 ∈ {0, 1}𝜆,

𝐴𝖲𝖪′ |𝜑𝑘⟩𝖲 ⊗ |0⟩𝖪′ =
∑︁
𝑘′

√
𝜖𝑘,𝑘′ |aux𝑘,𝑘′⟩𝖲 ⊗ |𝑘

′⟩𝖪′

for some auxiliary states {|aux𝑘,𝑘′⟩}𝑘,𝑘′∈{0,1}𝜆 and for some probabilities {𝜖𝑘,𝑘′}𝑘,𝑘′∈{0,1}𝜆 satisfying
(by the assumption on the adversary)

2−𝜆
∑︁
𝑘,𝑘′

𝜖𝑘,𝑘′ |⟨𝜑𝑘 | 𝜑𝑘′⟩|2 ≥ 1/𝑝(𝜆) .

Now define the unitary 𝑉 acting on register 𝖲𝖪′𝖳 that first applies the unitary 𝐴 to registers 𝖳𝖪′;
then, controlled on the state |𝑘′⟩ in register 𝖪′, prepares the state |𝜑𝑘′⟩⊗2 in register 𝖳; and finally
applies the inverse unitary 𝐴†. Note that this unitary 𝑉 is not necessarily efficient because it runs
the adversary 𝑊 . We now verify Equation (8.4):

| ⟨𝐷| (id𝖠 ⊗ 𝑉𝖡) |𝐶⟩ |2

=
⃒⃒⃒
2−𝜆

∑︁
𝑘

(︁∑︁
𝑘′

√
𝜖𝑘,𝑘′ ⟨aux𝑘,𝑘′ | ⊗ ⟨𝑘′| ⊗ ⟨𝜑𝑘|⊗2

)︁(︁∑︁
𝑘′′

√
𝜖𝑘,𝑘′′ |aux𝑘,𝑘′′⟩ ⊗ |𝑘′′⟩ ⊗ |𝜑𝑘′′⟩⊗2

)︁⃒⃒⃒2
=
⃒⃒⃒
2−𝜆

∑︁
𝑘,𝑘′

𝜖𝑘,𝑘′⟨𝜑𝑘 | 𝜑𝑘′⟩2
⃒⃒⃒2
≥ 1/𝑝(𝜆)2
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where in the last line we used the premise that 𝐺 is a real-valued OWSG so that ⟨𝜑𝑘 | 𝜑𝑘′⟩2 = |⟨𝜑𝑘 |
𝜑𝑘′⟩|2. Thus (1𝑛, 𝐶,𝐷) is a valid Uhlmann1/𝑝(𝜆)2 instance for some 𝑛 = poly(𝜆).

We have shown that the existence of some adversary 𝐴 breaking the 𝑡-copy OWSG security of
𝐺 implies there is some Uhlmann transformation that maps |𝐶⟩ to a state with fidelity at least
1/𝑝(𝜆)2 with |𝐷⟩. Now we argue that all algorithms 𝑀 = (𝑀𝑥)𝑥 that implement an Uhlmann
transformation for Uhlmann1/𝑝(𝜆)2 instances can be used to break the unclonability security of 𝐺.
In particular, letting 𝑀𝑥 be the Uhlmann transformation for instance 𝑥 = (1𝑛, 𝐶,𝐷), we have

F
(︁
(id⊗𝑀𝑥)(|𝐶⟩⟨𝐶|), |𝐷⟩⟨𝐷|

)︁
≥ 1/𝑟(𝜆)

for some polynomial 𝑟(𝜆). By measuring the 𝖪 register of both arguments, and using the joint
concavity of the fidelity function, we have

2−𝜆
∑︁
𝑘

F
(︁
(id⊗𝑀𝑥)(|𝜑𝑘⟩⟨𝜑𝑘| ⊗ |0⟩⟨0|), |𝜑𝑘⟩⟨𝜑𝑘|⊗3 ⊗ |0⟩⟨0|

)︁
≥ 1/𝑟(𝜆) ,

where for notational convenience we have grouped the three copies of |𝜑𝑘⟩ in |𝐷⟩ together. This
means that on average over the key 𝑘, the algorithm 𝑀𝑥 maps single copy of |𝜑𝑘⟩ (plus some zeroes)
to three copies of |𝜑𝑘⟩ (plus some zeroes) with fidelity at least 1/𝑟(𝜆). This implies that 𝐺 does not
have single-copy unclonability security.

8.3 Falsifiable quantum cryptographic assumptions

In this section, we show an 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤 upper bound for breaking falsifiable quantum crypto-
graphic assumptions, which can be seen as a quantum analogue of the notion of falsifiable assumption
considered by Naor [Nao03] as well as Gentry and Wichs [GW11]. Morally having a falsifiable as-
sumption means that the challenger in the security game must be efficient, so that if an adversary
claims to break the security game, it is possible to verify that she has done so. Roughly speaking, we
show that a falsifiable assumption is either information-theoretically secure (in which case, not even a
computationally unbounded prover can win at the security experiment beyond a certain threshold),
or it can be reduced to DistSuccinctUhlmann, and hence it can broken in 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖯𝖲𝖯𝖠𝖢𝖤
(as shown in Section 7).

Our notion of a falsifiable quantum cryptographic assumption captures most cryptographic as-
sumptions in both classical and quantum cryptography. The definition is essentially a 𝖰𝖨𝖯 protocol,
albeit cast in a cryptographic language. Instead of a verifier, we have a challenger ; instead of a
prover, we have an adversary. We formally define falsifiable quantum cryptographic assumptions
as follows. We refer the reader to Section 4 for the formal definitions of quantum verifiers and
interactive protocols.

Definition 8.19 (Falsifiable quantum cryptographic assumption). A falsifiable quantum crypto-
graphic assumption (or falsifiable assumption for short) is a pair (𝒞, 𝑐) consisting of a polynomial-
time quantum verifier 𝒞 = (𝒞𝑥)𝑥 (which we call the challenger) and a constant 𝑐 ∈ [0, 1]. Given a
string 𝑥 ∈ {0, 1}*,19 the challenger 𝒞𝑥 engages in an interaction with a prover 𝒜 (which also gets

19Here, 𝑥 should be taken as the security parameter in unary 1𝜆, and perhaps in addition expected format of the
interaction. This includes for example, the number of queries that the adversary wishes to make (in a CCA security
game for an encryption scheme as an example), or an upper bound on the message length sent by the adversary
(in a collision finding security game as an example). The point of having 𝑥 is so that the overall running time of
the challenger is upper bounded by a fixed polynomial in |𝑥|. Furthermore, since we allow arbitrary bitstrings, this
should be regarded as auxiliary input to the cryptosystem.
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the input 𝑥) called the adversary. At the end of the protocol, the challenger accepts or rejects. If
the challenger accepts, we say that the adversary wins.

See Figure 3 for a depiction of an interaction between a challenger and adversary. We now
describe the security property corresponding to a falsifiable assumption.

Definition 8.20 (Security of a falsifiable assumption). A falsifiable assumption (𝒞, 𝑐) is computa-
tionally secure (resp. information-theoretically secure) if for all polynomial-time (resp. computation-
ally unbounded) adversaries 𝒜, there exists a negligible function 𝜈 such that for all 𝑥 ∈ {0, 1}*, the
probability that the adversary is accepted is at most 𝑐+𝜈(|𝑥|) over the randomness of the interaction
𝒞𝑥⇆𝒜. We say that a (possibly inefficient) adversary 𝒜 breaks instance 𝑥 of the assumption (𝒞, 𝑐)
with advantage 𝛿 if Pr

(︁
𝒞𝑥⇆𝒜 accepts

)︁
≥ 𝑐+ 𝛿.

Here are some (informally-described) examples of falsifiable quantum cryptographic assump-
tions.

1. (Public-key quantum money) Consider a candidate public-key quantum money scheme
(see [Aar16, Lectures 8 and 9] for a longer discussion of quantum money). The assump-
tion here is the pair (𝒞$, 0). The challenger 𝒞$ first generates a random money state along
with the serial number and sends both to the adversary (while remembering the serial num-
ber). The adversary wins if it can send back two states (which may be entangled) that both
pass the money scheme’s verification procedure.

2. (Pseudorandom states) Consider a candidate pseudorandom state generator 𝐺 [JLS18]. The
assumption here is (𝒞PRS, 12) where the instances 𝑥 specify the security parameter 𝜆 as well
as a positive integer 𝑡. The challenger 𝒞PRS, given 𝑥 = (1𝜆, 1𝑡), either sends to the adversary
𝑡 copies of a pseudorandom state or 𝑡 copies of a Haar-random state (which can be done
efficiently using, e.g., 𝑡-designs [AE07]). The adversary wins if it can guess whether it was
given pseudorandom states or Haar-random states.

3. (Quantum EFI pairs) Consider a candidate ensemble of EFI pairs {(𝜌𝜆,0, 𝜌𝜆,1)}𝜆 [BCQ23].
The assumption here is (𝒞EFI, 12). The challenge 𝒞EFI picks a random bit 𝑏 ∈ {0, 1} and sends
𝜌𝜆,𝑏 to the adversary. The adversary wins if it can guess the bit 𝑏.

Theorem 8.21. A falsifiable quantum cryptographic assumption (𝒞, 𝑐) is either information-
theoretically secure, or breaking the assumption (𝒞, 𝑐) can be reduced to DistSuccinctUhlmann1.

Formally what we mean by “breaking the assumption can be reduced to
DistSuccinctUhlmann1” is the following: there exists an adversary 𝐴 that is a polyno-
mial time quantum query algorithm with access to a DistSuccinctUhlmann1 oracle and breaks
infinitely many instances 𝑥 of the assumption (𝒞, 𝑐) with advantage 1/𝑝(|𝑥|) for some polynomial 𝑝.

The proof of Theorem 8.21 is very similar to that of Lemma 7.5: again, the idea is that if
we are considering a quantum interactive protocol, we can implement the prover’s (or in this case
adversary’s) actions as Uhlmann unitaries. Hence, if there is any adversary that can break the fal-
sifiable assumption, we can implement that adversary using a DistSuccinctUhlmann1 oracle, so
breaking the assumption reduces to DistSuccinctUhlmann1. To make the paper more modular,
we nonetheless spell out the details.
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𝒞1 𝒞2 𝒞3

𝒜1 𝒜2

challenger’s
private
qubits

message
qubits

adversary’s
private
qubits

← output
qubit

Figure 3: Quantum circuit representation of a 4-message interaction between an efficient challenger
and an adversary who seeks to falsify a cryptrographic assumption (𝒞, 𝑐).

Proof of Theorem 8.21. Suppose that (𝒞, 𝑐) is not in fact information-theoretically secure and there
exists a possibly inefficient adversary 𝒜 with at most 𝑟 = poly(𝑛) many rounds of interaction and
a polynomial 𝑝(𝑛) such that

Pr
(︁
𝒞𝑥⇆𝒜 accepts

)︁
≥ 𝑐+ 1/𝑝(𝑛) ,

where 𝑥 ∈ {0, 1}* and 𝑛 = |𝑥| for infinitely many 𝑥’s. For each round 𝑗 ∈ {1, . . . , 𝑟}, we let

• 𝜌
(𝑗)

𝖬𝑗
𝑥𝖶

𝑗
𝑥

denote the state of the message register 𝖬𝑗
𝑥 and the private workspace 𝖶𝑗

𝑥 of the
challenger 𝒞𝑥 at the beginning of the challenger’s 𝑗’th turn

• 𝜎
(𝑗)

𝖬𝑗
𝑥𝖶

𝑗
𝑥

denote the state of the message register and the challenger’s private workspace at the
end of the challenger’s 𝑗’th turn.

We now argue that the intermediate states on the message and challenger register in the interaction
of 𝒞𝑥 with 𝒜 have purifications in 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤. Let 𝑞(𝑛) = 𝑝(𝑛)/2 be a polynomial. From [MY23,
Lemma 7.5], it follows that, for all 𝑥, there exists a prover 𝒫𝑥 that is accepted with probability at
least 𝑐+ 1/2𝑝(𝑛) for which the following property holds: there are families of pure states

(|𝜓𝑥,𝑗⟩𝖬𝑗
𝑥𝖶

𝑗
𝑥𝖯

𝑗
𝑥
)𝑥,𝑗 , |𝜙𝑥,𝑗⟩𝖬𝑗

𝑥𝖶
𝑗
𝑥𝖯

𝑗
𝑥
)𝑥,𝑗 ∈ 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤1/𝑞(𝑛)

for some purifying registers 𝖯𝑗𝑥 that are purifications of intermediate states 𝜌(𝑗)
𝖬𝑗
𝑥𝖶

𝑗
𝑥

and 𝜎
(𝑗)

𝖬𝑗
𝑥𝖶

𝑗
𝑥

of
the challenger 𝒞𝑥 interacting with the prover 𝒫𝑥. Moreover, there are polynomial-time Turing
machines that, given as input a description of the verifier’s actions in the protocol, output succinct
classical descriptions of the quantum polynomial-space circuits for preparing |𝜓𝑥,𝑗⟩ and |𝜙𝑥,𝑗⟩. This
holds because [MY23, Lemma 7.5] only relies on the block-encoding transformations implemented
in [MY23, Theorems 5.5 and 6.1], which have efficient (and explicit) descriptions.

This means that for each round 𝑗 of the protocol, there exist polynomial-space quantum cir-
cuits 𝐶𝑗 and 𝐷𝑗 with efficiently computable succinct classical descriptions 𝐶𝑗 and �̂�𝑗 such that
|𝜓𝑥,𝑗⟩𝖬𝗃

𝗑𝖶
𝗃
𝗑𝖯

𝗃
𝗑
= 𝐶𝑗 |0 . . . 0⟩ and |𝜙𝑥,𝑗⟩𝖬𝗃

𝗑𝖶
𝗃
𝗑𝖯

𝗃
𝗑
= 𝐷𝑗 |0 . . . 0⟩ are purifications of the reduced state on

93



the message register 𝖬𝗃
𝗑 and challenger register 𝖶𝗃

𝗑 of the interactive protocol right before and after
the prover’s action in round 𝑗. Notice that because the challenger register in the interactive protocol
is not acted upon by the prover, the reduced states on the challenger register are unchanged, i.e.

Tr
𝖬𝗃

𝗑𝖯
𝗃
𝗑

(︁
|𝜓𝑥,𝑗⟩⟨𝜓𝑥,𝑗 |𝖬𝗃

𝗑𝖶
𝗃
𝗑𝖯

𝗃
𝗑

)︁
= Tr

𝖬𝗃
𝗑𝖯

𝗃
𝗑

(︁
|𝜙𝑥,𝑗⟩⟨𝜙𝑥,𝑗 |𝖬𝗃

𝗑𝖶
𝗃
𝗑𝖯

𝗃
𝗑

)︁
.

We can therefore interpret the circuit pair (𝐶𝑗 , 𝐷𝑗) as an instance of the SuccinctUhlmann1

problem, with 𝖶𝗃 taking the role of the register that cannot be acted upon by the Uhlmann unitary.
Hence, with access to a DistSuccinctUhlmann1-oracle, we can apply an Uhlmann transformation
mapping |𝜓𝑥,𝑗⟩𝖬𝗃

𝗑𝖶
𝗃
𝗑𝖯

𝗃
𝗑

to |𝜙𝑥,𝑗⟩𝖬𝗃
𝗑𝖶

𝗃
𝗑𝖯

𝗃
𝗑

by acting only on registers 𝖬𝗃
𝗑𝖯

𝗃
𝗑. This means that with the

DistSuccinctUhlmann1-oracle, we can efficiently implement the actions of a successful prover in
the interactive protocol.

8.4 Open problems

In Section 8.2 we studied the complexity of breaking a special class of real-valued state generators.
A natural question is whether the real-valued property is without loss of generality. For solving
decision problems, it is without loss of generality to use quantum circuits with only real-valued
gates [Shi03, Aha03]; however it is a priori possible that protocols where the parties compute with
complex-valued gates may allow for stronger security guarantees than if they were restricted to only
real-valued gates.

Open Problem 17. Can all unclonable or one-way state generators be made real-valued without
loss of generality? Are there quantum cryptographic primitives where the security depends on
quantum computing with complex-valued gates?

Open Problem 18. Can Theorem 8.18 be strengthened so that an unclonable/one-way state
generator is either statistically secure or is efficiently broken using an oracle for DistUhlmann𝜅
for some range of 𝜅?

Solving this requires strengthening Theorem 8.18 in two ways: first, getting rid of the real-
valued, clean-output conditions, and second, make the two bullets of the “either-or” statement talk
about the same type of security (OWSG or unclonability), whereas currently they are different in
the statement of Theorem 8.18. We note that Khurana and Tomer [KT23] show that pure-state
OWSGs with 𝑡(𝜆)-copy security for sufficiently-large polynomial 𝑡 implies the existence of quantum
commitments (which in turn implies the hardness of DistUhlmann).

Morimae and Yamakawa [MY22a, MY22b] asked whether OWSGs constitute a minimal assump-
tion in quantum cryptography. A natural question, in particular, is whether OWSGs are implied
by so-called unclonable cryptographic primitives, such as quantum money [Aar09, AC12], quantum
copy-protection [Aar09, CMP20, CLLZ21], or unclonable encryption [BL20, AKL+22], which lever-
age the quantum no-cloning principle to achieve unforgeable banknotes, programs, and ciphertexts.

Open Problem 19. Do unclonable cryptographic primitives, such as quantum money, copy-
protection, or unclonable encryption imply the hardness of the Uhlmann Transformation Problem?

Open Problem 20. Can computationally secure OWSGs be constructed assuming the hardness
of DistUhlmann1/𝑝(𝑛) for some polynomial 𝑝?
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9 Applications to Quantum Shannon Theory

We now relate the Uhlmann Transformation Problem to two fundamental tasks in quantum Shannon
theory: decoding the output of quantum channels and compressing quantum information. We show
that both of these tasks can be performed in polynomial time if the Uhlmann transformation problem
can be implemented in polynomial time. We also prove that channel decoding is as hard as solving
the Uhlmann transformation problem for a range of parameters.

9.1 Decoding channels

We discuss the task of decoding the output of a channel (i.e. recovering the input to the channel
from its output). We focus on channels that are decodable:

Definition 9.1 (Decodable channel). Let 𝜖 > 0. A channel 𝒩 mapping register 𝖠 to 𝖡 is 𝜖-
decodable if there exists a (not necessarily efficient) quantum algorithm 𝐷 that takes as input register
𝖡 and outputs register 𝖠′ isomorphic to 𝖠 such that

F
(︁
(𝐷𝖡→𝖠′ ∘ 𝒩𝖠→𝖡)(|Φ⟩⟨Φ|𝖠𝖱), |Φ⟩⟨Φ|𝖠′𝖱

)︁
≥ 1− 𝜖 ,

where |Φ⟩𝖠𝖱 is the maximally entangled state on registers 𝖠𝖱.

Remark 9.2. We could also consider a generalization of Definition 9.1 where we consider states
other than the maximally entangled state. However we focus on the maximally entangled state for
simplicity, and it already illustrates the key ideas of our complexity result. Furthermore, decodable
channels most naturally arise in the context of error corrected communication: there, given any
noisy channel, the goal is to find an encoding channel such that the concatenation of encoder and
noisy channel is decodable. It is known that using the maximally entangled state as the input to a
coding scheme for a noisy channel is without loss of generality (up to small changes in capacity, see
e.g. [Ren22, Chapter 15]).

We first show a sufficient and necessary condition for a channel 𝒩 : 𝖠 → 𝖡 to be decodable.
Recall the definition of a Stinespring dilation of a channel: this is an isometry 𝑉 : 𝖠 → 𝖡𝖢
such that 𝒩 (𝑋) = Tr𝖢(𝑉 𝑋𝑉

*). We introduce a condition about the complementary channel
𝒩 𝑐(𝑋) := Tr𝖡(𝑉 𝑋𝑉

*) defined relative to a Stinespring dilation 𝑉 :

Definition 9.3 (Decoupling condition for channels). We say a channel 𝒩𝖠→𝖡 satisfies the decou-
pling condition with error 𝜖 if

F
(︁
𝒩 𝑐

𝖠→𝖢(|Φ⟩⟨Φ|𝖠𝖱), 𝒩
𝑐
𝖠→𝖢

(︁ id𝖠

dim𝖠

)︁
⊗ id𝖱

dim𝖱

)︁
≥ 1− 𝜖 ,

where 𝒩 𝑐 is a complementary channel to 𝒩 relative to any Stinespring dilation.

Proposition 9.4 (Necessary and sufficient conditions for decodability). If a channel 𝒩 satisfies
the decoupling condition with error 𝜖, then it is 𝜖-decodable. If it is 𝜖-decodable, then it satisfies the
decoupling condition with error 2

√
𝜖.

In other words, a channel is decodable if and only if the output of the complementary channel is
close to unentangled with the reference register 𝖱 of the maximally entangled state that was input
to channel.
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Proof. The first direction we prove is the following: if a channel 𝒩 satisfies the decoupling condition,
then it is decodable. Let 𝑉 denote the Stinespring dilation of 𝒩 which defines the complementary
channel 𝒩 𝑐 satisfying the decoupling condition.

Let registers 𝖠′,𝖱′ be isomorphic to 𝖠,𝖱 respectively. Consider the following pure states:

|𝐸⟩𝖱𝖡𝖢𝖠′𝖱′ := 𝑉𝖠→𝖡𝖢 |Φ⟩𝖱𝖠 ⊗ |0⟩𝖠′𝖱′

|𝐹 ⟩𝖱𝖠′𝖡𝖢𝖱′ := |Φ⟩𝖱𝖠′ ⊗ 𝑉𝖠→𝖡𝖢 |Φ⟩𝖠𝖱′ .

Note that the reduced density matrices of |𝐸⟩ and |𝐹 ⟩ on registers 𝖢 and 𝖱 are, respectively,
𝒩 𝑐

𝖠→𝖢(|Φ⟩⟨Φ|𝖠𝖱) and 𝒩 𝑐
𝖠→𝖢

(︁
id𝖠

dim𝖠

)︁
⊗ id𝖱

dim𝖱 . Therefore by the decoupling condition and Uhlmann’s
theorem there exists a unitary 𝑈 mapping registers 𝖡𝖠′𝖱′ to registers 𝖠′𝖡𝖱′ such that

F
(︁
(id⊗ 𝑈) |𝐸⟩⟨𝐸| (id⊗ 𝑈 †), |𝐹 ⟩⟨𝐹 |

)︁
≥ 1− 𝜖 . (9.1)

Define the decoding procedure 𝐷 that maps register 𝖡 to register 𝖠′ and behaves as follows: it
appends registers 𝖠′𝖱′ in the |0⟩ state, applies the isometry 𝑈 to registers 𝖡𝖠′𝖱′, and then traces
out registers 𝖡𝖱′ to obtain register 𝖠′. Since |𝐸⟩ is the result of applying the Stinespring dilation of
𝒩 to |Φ⟩ and appending |0⟩𝖠′𝖱′ , and using the fact that tracing out registers 𝖡𝖱′ does not reduce
the fidelity, Equation (9.1) implies that

F
(︁
(𝐷𝖡→𝖠′ ∘ 𝒩𝖠→𝖡)(|Φ⟩⟨Φ|𝖠𝖱), |Φ⟩⟨Φ|𝖠′𝖱

)︁
≥ 1− 𝜖 ,

showing that 𝒩 is 𝜖-decodable, as desired.
Now we argue the other direction (if 𝒩 is decodable, then the decoupling condition holds). The

fact that it is decodable is equivalent to

Tr
(︁
|Φ⟩⟨Φ| (𝐷𝖡→𝖠′ ∘ 𝒩𝖠→𝖡)(|Φ⟩⟨Φ|𝖠𝖱)

)︁
≥ 1− 𝜖 .

Considering the Stinespring dilation 𝑉 : 𝖠→ 𝖡𝖢 of 𝒩 this is equivalent to

Tr
(︁
(|Φ⟩⟨Φ|𝖠′𝖱 ⊗ id𝖢)𝐷𝖡→𝖠′(𝑉 |Φ⟩⟨Φ|𝖠𝖱 𝑉

†)
)︁
≥ 1− 𝜖 . (9.2)

Suppose we measure 𝐷𝖡→𝖠′
(︀
𝑉 |Φ⟩⟨Φ|𝖠𝖱 𝑉 †

)︀
with the projector |Φ⟩⟨Φ| and succeed. The post-

measurement state is thus |Φ⟩⟨Φ| ⊗ 𝜌𝖢 for some density matrix 𝜌. Since the measurement succeeds
with probability at least 1− 𝜖, by the Gentle Measurement Lemma we get

F
(︁
𝐷𝖡→𝖠′(𝑉 |Φ⟩⟨Φ|𝖠𝖱 𝑉

†), |Φ⟩⟨Φ|𝖠′𝖱 ⊗ 𝜌𝖢
)︁
≥ 1− 𝜖 . (9.3)

Tracing out register 𝖠′ from both sides, which does not reduce the fidelity, yields

F
(︁
𝒩 𝑐

𝖠→𝖢(|Φ⟩⟨Φ|𝖠𝖱), 𝜌𝖢 ⊗
id𝖱

dim𝖱

)︁
≥ 1− 𝜖 . (9.4)

On the other hand, tracing out registers 𝖠′𝖱 in Equation (9.3) also yields

F
(︁
𝒩 𝑐

𝖠→𝖢

(︁ id𝖠

dim𝖠

)︁
, 𝜌𝖢

)︁
≥ 1− 𝜖 . (9.5)

Combining Equations (9.4) and (9.5), tracing out register 𝖠′, and using Fuchs-van de Graaf twice,
and we get

F
(︁
𝒩 𝑐

𝖠→𝖢(|Φ⟩⟨Φ|𝖠𝖱) , 𝒩
𝑐
𝖠→𝖢

(︁ id𝖠

dim𝖠

)︁
⊗ id𝖱

dim𝖱

)︁
≥ 1− 2

√
𝜖 ,

which is the desired decoupling condition.

96



9.1.1 Complexity of the Decodable Channel Problem

Previously we identified necessary and sufficient conditions for when a channel is information-
theoretically decodable. Now we investigate when a decodable channel can be efficiently decoded.
First we define a computational problem corresponding to decoding a given channel.

Definition 9.5 (𝜖-Decodable Channel Problem). Let 𝜖, 𝛿 : ℕ→ [0, 1] be functions. Let 𝐷 = (𝐷𝑥)𝑥
be quantum algorithm. Then we say that 𝐷 solves the 𝜖-Decodable Channel Problem with error 𝛿 if
for all 𝑥 = (1𝑚, 1𝑟, 𝐶) where 𝐶 is an explicit description of a quantum circuit that maps 𝑚 qubits
to 𝑟 qubits and is a 𝜖-decodable channel, the circuit 𝐷𝑥 takes as input 𝑟 qubits and satisfies

F
(︁
(𝐷𝑥 ∘ 𝐶)(|Φ⟩⟨Φ|), |Φ⟩⟨Φ|

)︁
≥ 1− 𝛿(|𝑥|) ,

where |Φ⟩ is the maximally entangled state on 𝑚 qubits.

The main result of this section is to show that the complexity of the Decodable Channel Problem
is equivalent to the complexity of the (distributional) Uhlmann Transformation Problem.

Theorem 9.6. DistUhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 for all negligible functions 𝜖(𝑛) if and only if
for every negligible function 𝜖(𝑛) and for every polynomial 𝑞(𝑛), the 𝜖-Decodable Channel Problem
is solvable in uniform polynomial time with error 𝑂(1/𝑞(𝑛)).

Proof. Upper bound. We start by proving the the “only if” direction (if DistUhlmann1−𝜖 is
easy, then the Decodable Channel Problem is easy). Let 𝜖(𝑛) be a negligible function and let 𝑞(𝑛)
be a polynomial. We present an algorithm 𝐷 that solves the 𝜖-Decodable Channel Problem with
error 𝑂(1/𝑞(𝑛)), and is efficient under the assumption about DistUhlmann.

Let 𝑥 = (1𝑚, 1𝑟, 𝐶) be an instance of the 𝜖-Decodable Channel Problem be such that 𝐶 is a
quantum circuit computing an 𝜖-decodable channel mapping 𝑛 qubits (which we label as register
𝖠) to 𝑟 qubits (which we label as register 𝖡). Let 𝑉 denote the unitary purification of 𝐶 (see
Definition 2.7) of 𝐶, which we view also as a Stinespring dilation of 𝐶 that maps register 𝖠 to
registers 𝖡𝖢. Let 𝖠′,𝖱′ denote registers isomorphic to 𝖠,𝖱, respectively. Consider the pure states
|𝐸⟩𝖱𝖡𝖢𝖠′𝖱′ and |𝐹 ⟩𝖱𝖠′𝖡𝖢𝖱′ defined in the proof of Proposition 9.4 with respect to the dilation 𝑉 .
Note that these states can be computed by circuits 𝐸,𝐹 with size poly(|𝐶|). By padding we can
assume without loss of generality that 𝐸,𝐹 act on 2𝑘 qubits where 𝑘 ≥ |𝑥|.

Since the channel 𝐶 is 𝜖-decodable, then by Proposition 9.4 it satisfies the decoupling condition
with error 2

√
𝜖. Therefore it follows that 𝑦 = (1𝑘, 𝐸, 𝐹 ) is a valid Uhlmann1−2

√
𝜖 instance (where

the registers are divided into two groups 𝖢𝖱 and 𝖡𝖠′𝖱′). Since 𝜖 is negligible, so is 2
√
𝜖. Therefore

DistUhlmann1−2
√
𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 by assumption, and thus there exists a polynomial-time

algorithm 𝑀 = (𝑀𝑦)𝑦 that implements DistUhlmann1−2
√
𝜖 with average-case error 1/𝑞. By

Proposition 5.8, it follows that for 𝑦 = (1𝑘, 𝐸, 𝐹 ) with 𝑘 = poly(|𝑥|), the algorithm 𝑀𝑦 satisfies, for
sufficiently large 𝑘,

F
(︁
(id⊗𝑀𝑦)(|𝐸⟩⟨𝐸|), |𝐹 ⟩⟨𝐹 |

)︁
≥
(︁
1− 1

𝑞(𝑘)
−𝑂(𝜖(𝑘)1/4)

)︁2
≥ 1−𝑂(1/𝑞(𝑘)) . (9.6)

In the second inequality we used the fact that 𝜖 is a negligible function.
The algorithm 𝐷 = (𝐷𝑥)𝑥 behaves as follows on instance 𝑥 = (1𝑚, 1𝑟, 𝐶) of the 𝜖-Decodable

Channel Problem. It receives as input a register 𝖡. It first computes the description of the
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Uhlmann1−2
√
𝜖 instance 𝑦 = (1𝑘, 𝐸, 𝐹 ) described above. It initializes ancilla registers 𝖠′𝖱′ in

the zero state, and then applies the algorithm 𝑀𝑦 to registers 𝖡𝖠′𝖱′. Finally, the algorithm 𝐷𝑥

then traces out registers 𝖡𝖱′ and outputs the remaining register 𝖠′.
Now we analyze the behavior of the algorithm 𝐷𝑥 when it receives the 𝖡 register of the state

𝐶𝖠→𝖡(|Φ⟩⟨Φ|𝖠𝖱). Note that(︁
(𝐷𝑥)𝖡→𝖠′ ∘ 𝐶𝖠→𝖡

)︁
(|Φ⟩⟨Φ|𝖱𝖠) = Tr𝖢𝖡𝖱′

(︁
(id⊗𝑀𝑦)(|𝐸⟩⟨𝐸|)

)︁
|Φ⟩⟨Φ|𝖱𝖠′ = Tr𝖠𝖡𝖢𝖱′

(︁
|𝐹 ⟩⟨𝐹 |

)︁
.

By Equation (9.6) and the fact that the fidelity does not decrease under partial trace we have

F
(︁(︁

(𝐷𝑥)𝖡→𝖠′ ∘ 𝐶𝖠→𝖡

)︁
(|Φ⟩⟨Φ|𝖱𝖠) , |Φ⟩⟨Φ|𝖱𝖠′

)︁
≥ F

(︁
(id⊗𝑀𝑦)(|𝐸⟩⟨𝐸|), |𝐹 ⟩⟨𝐹 |

)︁
≥ 1−𝑂(1/𝑞(𝑘)) .

Thus we have shown that 𝐷 = (𝐷𝑥)𝑥 solves the 𝜖-Decodable Channel Problem with error 𝑂(1/𝑞(𝑘)),
and since 𝑘 ≥ |𝑥|, this is at most 𝑂(1/𝑞(|𝑥|)) for sufficiently large |𝑥|, as desired. This concludes
the “only if” direction.

Lower bound. We now prove the “if” part of the theorem (if the Decodable Channel Problem
is easy, then DistUhlmann is easy). The intuition behind the proof is as follows: we prove the
contrapositive and argue that if DistUhlmann is hard, then we can construct a family of hard
instances of the Decodable Channel Problem. These hard instances, intuitively, will be decodable
channels 𝒩 that take as input 𝑏 ∈ {0, 1} and output an encryption 𝜌𝑏. The states 𝜌0 and 𝜌1
are far from each other, but are computationally indistinguishable (this is also known as an EFI
pair [BCQ23]). Thus no efficient decoder can correctly recover the bit 𝑏, even though the channel
𝒩 is information-theoretically decodable by construction.

To construct such an encryption channel, we leverage quantum commitments, which we
have already discussed in Section 8.1. Theorem 8.10 and Proposition 8.7 almost show that
DistUhlmann1−𝜖 /∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 for some negligible function 𝜖 implies the existence of
strong statistical binding, weak computational hiding commitments. By “almost”, we mean
that Theorem 8.10 assumes something stronger, which is that DistUhlmann1−𝜖 is not in
𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒, and furthermore hard instances of DistUhlmann can be efficiently generated.
This is needed in order to obtain a bonafide quantum commitment with the requisite properties.
However for this lower bound we use a slightly weaker primitive, where we do not need the hard
instances to be uniformly generated and for the security to only hold against uniform adversaries.
We describe the primitive formally below, and the proof of this implication follows along the same
lines as the proof of Theorem 8.10.

Let 𝜖(𝑛) be a negligible function and let 𝛿(𝑛) = 1/𝑝(𝑛) be an inverse polynomial for which
DistUhlmann1−𝜖 ̸∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯𝛿, and assume towards a contradiction that for every negli-
gible function 𝜈(𝑛) and every polynomial 𝑞(𝑛), the 𝜈-Decodable Channel Problem is solvable in
polynomial time by an algorithm 𝐷 = (𝐷𝑥)𝑥 with error at most 1/𝑞(𝑛).

The following lemma shows that the hardness of DistUhlmann implies the existence of families
of circuits that can be interpreted as strong statistical binding, infinitely often weak computational
hiding commitments.

Lemma 9.7. Let 𝜖(𝑛) be a negligible function. If DistUhlmann1−𝜖 /∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯, then there
exists an inverse polynomial 𝛿(𝑛) = 1/𝑝(𝑛) and a family of circuits {𝐶𝑥,𝑏}𝑥∈{0,1}*,𝑏∈{0,1} on registers
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𝖡𝖤 where 𝐶𝑥,𝑏 acts on poly(|𝑥|) qubits satisfying the following properties: for all 𝑥 ∈ {0, 1}*, letting
𝜌𝑥,𝑏 denote the reduced density matrix of |𝐶𝑥,𝑏⟩ on register 𝖤,

1. (Always strong statistical binding) F(𝜌𝑥,0, 𝜌𝑥,1) ≤ 𝜖(|𝑥|).

2. (Infinitely often weak computational hiding) For all uniform polynomial-time algorithms 𝐴 =
{𝐴𝑥}𝑥, there exist infinitely many 𝑥 such that

|Pr (𝐴𝑥(𝜌𝑥,0) = 1)− Pr (𝐴𝑥(𝜌𝑥,1) = 1)| ≤ 𝛿(|𝑥|) .

We first show how this lemma implies the lower bound for Theorem 9.6. For all 𝑥 ∈ {0, 1}*, 𝑏 ∈
{0, 1} let |𝜓𝑥,𝑏⟩ := 𝐶𝑥,𝑏 |0 · · · 0⟩. For every 𝑥 ∈ {0, 1}* define the channel 𝒩𝑥 that does the following:
given a qubit register 𝖠 in the state |𝑏⟩ it prepares the state

|𝜃𝑏⟩𝖠𝖷𝖡𝖤 :=
1

2

∑︁
𝑎

𝑋𝑎 |𝑏⟩𝖠 ⊗ |𝑎⟩𝖷 ⊗ |𝜓𝑥,𝑎⟩𝖡𝖤

and then traces out registers 𝖷𝖡, and outputs registers 𝖠𝖤. Note that this channel can be computed
by a unitary circuit 𝑉𝑛 of size poly(|𝐶𝑥,0|, ||𝐶𝑥,1|).

Claim 9.8. For all 𝑥 ∈ {0, 1}* the channel 𝒩𝑥 is 8
√︀
𝜖(|𝑥|)-decodable.

Proof. Let 𝒩 𝑐
𝑥 denote the complementary channel that does the same thing as 𝒩𝑥 except it outputs

registers 𝖷𝖡 and traces out registers 𝖠𝖤. Consider applying 𝒩 𝑐
𝑥 to qubit 𝖠 of the maximally

entangled state |Φ⟩𝖱𝖠. Then the state of registers 𝖱𝖷𝖡 is as follows:

1

4

∑︁
𝑏,𝑐,𝑎,𝑎′

|𝑏⟩⟨𝑐|𝖱 ⊗ |𝑎⟩⟨𝑎
′|𝖷 ⊗ Tr𝖤(|𝜓𝑥,𝑎⟩⟨𝜓𝑥,𝑎′ |)⊗ ⟨𝑐|𝑋𝑎′𝑋𝑎 |𝑏⟩ . (9.7)

Fix 𝑎 ̸= 𝑎′. Then we claim that

‖Tr𝖤(|𝜓𝑥,𝑎⟩⟨𝜓𝑥,𝑎′ |)‖1 =
√︁
F(𝜌𝑥,𝑎, 𝜌𝑥,𝑎′)

where 𝜌𝑥,𝑏 is the reduced density matrix of |𝜓𝑥,𝑏⟩ on register 𝖤. To see this, let |𝜓𝑥,𝑎⟩ =
√
𝜌𝑥,𝑎⊗𝑈𝑎 |Ω⟩

where 𝑈𝑎 is some unitary on register 𝖡, and |Ω⟩𝖡𝖤 is an unnormalized maximally entangled state
between registers 𝖡 and 𝖤. Then

‖Tr𝖤(|𝜓𝑥,0⟩⟨𝜓𝑥,1|)‖1 = ‖Tr𝖤
(︁√

𝜌𝑥,0 ⊗ 𝑈0 |Ω⟩⟨Ω|
√
𝜌𝑥,1 ⊗ 𝑈 †1

)︁
‖1

= ‖𝑈0
√
𝜌𝑥,0

⊤√𝜌𝑥,1𝑈 †1‖1

= ‖√𝜌𝑥,0⊤
√
𝜌𝑥,1‖1 = ‖

√
𝜌𝑥,0
√
𝜌𝑥,1‖1 =

√︁
F(𝜌𝑥,0, 𝜌𝑥,1)

as desired. Here, ⊤ and · denote transpose and complex conjugate with respect to the standard
basis, respectively. The third line follows from the unitary invariance of the trace norm, invariance
of the trace norm by complex conjugation, and the definition of fidelity.

By the always strong statistical binding of commitment {𝐶𝑥,𝑏} the fidelity between F(𝜌𝑥,0, 𝜌𝑥,1)
is at most 𝜖(|𝑥|). Thus the cross-terms in the state in Equation (9.7) are small and we get that
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the state in Equation (9.7) is within 4
√︀
𝜖(|𝑥|) trace distance (and thus by Fuchs van-de Graaf,

1− 8
√︀
𝜖(|𝑥|) fidelity) of

id𝖱

2
⊗ 1

4

∑︁
𝑎

|𝑎⟩⟨𝑎|𝖷 ⊗ Tr𝖤(|𝜓𝑥,𝑎⟩⟨𝜓𝑥,𝑎|) =
id𝖱

2
⊗𝒩 𝑐

𝑥(id𝖠/2) .

Therefore the channel 𝒩𝑥 satisfies the 8
√︀
𝜖(|𝑥|)-decoupling condition, so by Proposition 9.4, the

channel 𝒩𝑥 is 8
√︀
𝜖(|𝑥|)-decodable as desired.

Suppose for contradiction that there existed a uniform polynomial-time quantum algorithm
𝐷 = (𝐷𝑥)𝑥 that solves the 8

√
𝜖-Decodable Channel Problem with error 1/𝑛. For every 𝑥 ∈ {0, 1}*

define 𝑦𝑥 := (11, 1𝑟𝑥 , 𝑉𝑥) where 𝑟𝑥 is the number of output qubits and 𝑉𝑥 is the circuit computing
channel 𝒩𝑥. Then for all 𝑥,

F((𝐷𝑥 ∘ 𝒩𝑥)(|Φ⟩⟨Φ|𝖱𝖠), |Φ⟩⟨Φ|𝖱𝖠) ≥ 1− 1/|𝑥| .

Applying Fuchs-van de Graaf we get

td((𝐷𝑥 ∘ 𝒩𝑥)(|Φ⟩⟨Φ|𝖱𝖠), |Φ⟩⟨Φ|𝖱𝖠) ≤ 1/
√︀
|𝑥| .

Measuring the register 𝖱 in the standard basis of both arguments does not increase the trace
distance. Using this and convexity we have

1

2

∑︁
𝑏

td((𝐷𝑥 ∘ 𝒩𝑥)(|𝑏⟩⟨𝑏|𝖠), |𝑏⟩⟨𝑏|𝖠) ≤ 1/
√︀
|𝑥| . (9.8)

We now perform a hybrid argument. Define the channel 𝒩 (0)
𝑥 := 𝒩𝑥. Define the channel 𝒩 (1)

𝑥

that prepares the state |𝜃(1)𝑏 ⟩ that is the same as |𝜃𝑏⟩ except the 𝖡𝖤 register is prepared in the state
|𝜓𝑥,0⟩ (i.e., independently of 𝑎), and then traces out registers 𝖷𝖡. Observe that the output of 𝒩 (1)

𝑥

on |𝑏⟩ is
1

2

∑︁
𝑎

𝑋𝑎 |𝑏⟩⟨𝑏|𝑋𝑎 ⊗ 𝜌𝑥,0 =
id
2
⊗ 𝜌𝑥,0 ,

i.e., independent of 𝑏. Then

1

2

∑︁
𝑏

td((𝐷𝑥 ∘ 𝒩 (0)
𝑥 )(|𝑏⟩⟨𝑏|), (𝐷𝑥 ∘ 𝒩 (1)

𝑥 )(|𝑏⟩⟨𝑏|))

=
1

2

∑︁
𝑏

td
(︁
𝐷𝑥

(︁1
2

∑︁
𝑎

𝑋𝑎 |𝑏⟩⟨𝑏|𝑋𝑎 ⊗ 𝜌𝑥,𝑎
)︁
, 𝐷𝑥

(︁ id
2
⊗ 𝜌𝑥,0

)︁)︁
=

1

2

∑︁
𝑏

td
(︁
𝐷𝑥

(︁1
2
|𝑏⟩⟨𝑏| ⊗ 𝜌𝑥,1

)︁
, 𝐷𝑥

(︁1
2
|𝑏⟩⟨𝑏| ⊗ 𝜌𝑥,0

)︁)︁
.

By the computational hiding property of {𝐶𝑥,𝑏}, for infinitely many 𝑥 ∈ {0, 1}* this quantity is at
most 𝛿(|𝑥|) (otherwise 𝐷𝑥 could be used to distinguish between 𝜌𝑥,0 and 𝜌𝑥,1 with bias better than
𝛿(|𝑥|)).

Combined with Equation (9.8), we have that for infinitely many 𝑥,

1

2

∑︁
𝑏

td((𝐷𝑥 ∘ 𝒩 (1)
𝑥 )(|𝑏⟩⟨𝑏|), |𝑏⟩⟨𝑏|) ≤ 1/

√︀
|𝑥|+ 𝛿(|𝑥|) .
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However since (𝐷𝑥 ∘ 𝒩 (1)
𝑥 )(|𝑏⟩⟨𝑏|) is a density matrix independent of 𝑏, this quantity is at least 1

2 ,
which is a contradiction for sufficiently large |𝑥| since 𝛿(|𝑥|) is an inverse polynomial.

We finish by establishing the existence of the commitments promised by Lemma 9.7, assuming
the hardness of DistUhlmann.

Proof of Lemma 9.7. Assume that DistUhlmann1−𝜖 /∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 for some negligible function
𝜖(𝑛). Then by Theorem 6.8 we have that DistUhlmann1−𝜖 /∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯1−𝜉 for 𝜉(𝑛) =

𝑛−1/16. If 𝑥 = (1𝑛, 𝐸, 𝐹 ) is a valid Uhlmann1−𝜖 instance, then we define the circuits 𝐶 ′𝑥,0 := 𝐸

and 𝐶 ′𝑥,1 := 𝐹 . Otherwise, define 𝐶 ′𝑥,0, 𝐶
′
𝑥,1 to be circuits such that |𝐶 ′𝑥,0⟩𝖡𝖤 = |02|𝑥|⟩𝖡𝖤 and

|𝐶 ′𝑥,1⟩𝖡𝖤 = |0|𝑥|⟩𝖡 ⊗ |1|𝑥|⟩𝖤. By definition and Proposition 5.8 we have that the family of circuits
{(𝐶 ′𝑥,0, 𝐶 ′𝑥,1)}𝑥∈{0,1}* satisfies

1. (Always strong statistical hiding) For all 𝑥 ∈ {0, 1}*, we have F(𝜎𝑥,0, 𝜎𝑥,1) ≥ 1− 𝜖(|𝑥|) where
𝜎𝑥,𝑏 is the reduced density matrix of |𝐶 ′𝑥,𝑏⟩ on register 𝖡.

This is because either 𝑥 is a valid Uhlmann1−𝜖 instance or 𝐶 ′𝑥,0, 𝐶 ′𝑥,1 were set to be trivial
circuits that satisfy this condition.

2. (Infinitely often weak computational binding) For all uniform polynomial time algorithms 𝐴 =
(𝐴𝑥)𝑥 there exists a polynomial 𝑝(𝑛) such that the following holds for infinitely many 𝑥:

F
(︀
(id𝖡 ⊗𝐴𝑥) |𝐶 ′𝑥,0⟩⟨𝐶 ′𝑥,0| , |𝐶 ′𝑥,1⟩⟨𝐶 ′𝑥,1|

)︀
≤ 1

𝑝(|𝑥|)
.

Thus we can think of the collection of circuit pairs {(𝐶 ′𝑥,0, 𝐶 ′𝑥,1)}𝑥 as a “pseudo-commitment” that
always has strong statistical hiding, and has weak computational binding infinitely often.

By performing the same flavor switching transformation (see Proposition 8.7) to each instance
(𝐶 ′𝑥,0, 𝐶

′
𝑥,1) of this pseudo-commitment, we get another family of circuit pairs {(𝐶𝑥,0, 𝐶𝑥,1)}𝑥 satis-

fying

1. (Always strong statistical binding) For all 𝑥 ∈ {0, 1}*, for all quantum circuits 𝐴 acting on 𝖡,

F ((𝐴⊗ id𝖤) |𝐶𝑥,0⟩⟨𝐶𝑥,0| , |𝐶𝑥,1⟩⟨𝐶𝑥,1|) ≤ 2𝜖(|𝑥|)2 .

2. (Infinitely often weak computational hiding) For all uniform polynomial-time algorithms 𝐴 =
(𝐴𝑥)𝑥, the following holds for infinitely many 𝑥:

|Pr (𝐴𝑥(𝜌𝑥,0) = 1)− Pr (𝐴𝑥(𝜌𝑥,1) = 1)| ≤
√︀

1/𝑝(|𝑥|)

where 𝜌𝑥,𝑏 is the reduced density matrix of |𝐶𝑥,𝑏⟩ on register 𝖤.

We make use of Uhlmann’s theorem to rephrase the statistical binding property in terms of the
fidelity between the reduced states on register 𝖤. Namely, by Uhlmann’s theorem, we have that for
all 𝑥

F(𝜌𝑥,0, 𝜌𝑥,1) = sup
𝐴

F ((𝐴⊗ id𝖤) |𝐶𝑥,0⟩⟨𝐶𝑥,0| , |𝐶𝑥,1⟩⟨𝐶𝑥,1|) .

The statistical binding property ensures that this is at most 2𝜖(|𝑥|)2 ≤ 𝜖(|𝑥|). This concludes the
proof.
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9.2 Compressing quantum information

In this section we show that the computational complexity of performing optimal compression of a
quantum state (that can be efficiently prepared) is equivalent to the complexity of performing the
Uhlmann Transformation Problem.

We consider the one-shot version of the information compression task, where one is given just
one copy of a density matrix 𝜌 (rather than many copies) and the goal is to compress it to as few
qubits as possible while being able to recover the original state within some error. The task is
defined formally as follows:

Definition 9.9 (Information compression task). Let 𝛿 ≥ 0 and let 𝜌 be an 𝑛-qubit density matrix.
We say that a pair of (not necessarily efficient) quantum circuits (𝐸,𝐷) compresses 𝜌 to 𝑠 qubits
with error 𝛿 if

1. 𝐸 is a quantum circuit that takes as input 𝑛 qubits and outputs 𝑠 qubits,

2. 𝐷 is a quantum circuit that takes as input 𝑠 qubits and outputs 𝑛 qubits,

3. For all purifications |𝜓⟩𝖠𝖱 of 𝜌 (where 𝖱 is the purifying register), we have

td
(︁
(𝐷 ∘ 𝐸)(𝜓), 𝜓

)︁
≤ 𝛿

where the composite channel 𝐷 ∘ 𝐸 acts on register 𝖠 of |𝜓⟩.

Define the 𝛿-error communication cost of 𝜌, denoted by 𝐾𝛿(𝜌), as the minimum integer 𝑠 such that
there exists a pair of quantum circuits (𝐸,𝐷) that compresses 𝜌 to 𝑠 qubits with error 𝛿.

In this section, we first analyze what is information-theoretically achievable for one-shot com-
pression. Then, we study the complexity of compressing quantum information to the information-
theoretic limit; we will show that it is equivalent to the complexity of the Uhlmann Transformation
Problem.

9.2.1 Information-theoretic compression

In the one-shot setting the state 𝜌 can be (information-theoretically) compressed to its smoothed
max entropy and no further. The smoothed max entropy is just one of a rich zoo of entropy measures
that are used in the setting of non-asymptotic quantum information theory [Tom13]. In this section
we consider the following entropy measures:

Definition 9.10 (Min-, max-, and Rényi 2-entropy). Let 𝜖 ≥ 0 and let 𝜓𝖠𝖡 be a density matrix on
registers 𝖠𝖡.

• The min-entropy of register 𝖠 conditioned on register 𝖡 of the state 𝜓 is

𝐻min(𝖠|𝖡)𝜓 := − log inf
𝜎∈Pos(𝖡):𝜓𝖠𝖡≤id𝖠⊗𝜎𝖡

Tr(𝜎)

The 𝜖-smoothed conditional min-entropy is

𝐻𝜖
min(𝖠|𝖡)𝜓 := sup

𝜎:𝑃 (𝜎,𝜓)≤𝜖
𝐻min(𝖠|𝖡)𝜎 ,

where 𝑃 (𝜎, 𝜓) is the purified distance (whose definition need not concern us, see [Tom13,
Definition 3.15]).
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• The max-entropy of register 𝖠 conditioned on register 𝖡 of the state 𝜓 is

𝐻max(𝖠|𝖡)𝜓 := sup
𝜎∈Pos(𝖡):Tr(𝜎)≤1

log ‖
√︀
𝜓𝖠𝖡

√︀
id𝖠 ⊗ 𝜎𝖡‖21 .

The 𝜖-smoothed conditional max-entropy is

𝐻𝜖
max(𝖠|𝖡)𝜓 := inf

𝜎:td(𝜎,𝜓)≤𝜖
𝐻max(𝖠|𝖡)𝜎 .

• The Rényi 2-entropy of register 𝖠 conditioned on register 𝖡 of the state 𝜓 is [Dup10, Definition
2.11]

𝐻2(𝖠|𝖡)𝜓 := − log inf
𝜎>0

Tr
(︁(︁

(id𝖠 ⊗ 𝜎𝖡)−1/2𝜓𝖠𝖡

)︁2)︁
where the infimum is over all positive definite density operators 𝜎 acting on register 𝖡. The
𝜖-smoothed conditional Rényi 2-entropy is

𝐻𝜖
2(𝖠|𝖡)𝜓 := sup

𝜎:td(𝜎,𝜓)≤𝜖
𝐻2(𝖠|𝖡)𝜎 .

We do not elaborate further on the meaning or motivation for the definitions of these entropy
measures (we refer the reader to [Tom13, KRS09] for deeper discussions); we will only use the
following properties of them:

Proposition 9.11 (Relations between the entropy measures). Let 𝜖 ≥ 0 and let |𝜓⟩𝖠𝖡𝖢 be a tri-
partite pure state. The following relationships hold:

• (Duality relation) 𝐻𝜖
min(𝖠|𝖡)𝜓 = −𝐻𝜖

max(𝖠|𝖢)𝜓. We note that this duality relation only holds
when 𝜓 is a pure state on registers 𝖠𝖡𝖢.

• (Bounds for conditional min/max-entropy) Both 𝐻𝜖
min(𝖠|𝖡)𝜓 and 𝐻𝜖

max(𝖠|𝖡)𝜓 are bounded
below by − log rank(𝜓𝖠), and bounded above by log rank(𝜓𝖠).

• ( Isometric invariance) For all isometries 𝑉 mapping register 𝖠 to 𝖠′ we have 𝐻min(𝖠|𝖡)𝜓 =
𝐻min(𝖠

′|𝖡)𝑉 𝜓𝑉 †.

• (Min- versus 2-entropy) 𝐻min(𝖠|𝖡)𝜓 ≤ 𝐻2(𝖠|𝖡)𝜓.

• (Operational interpretation of min-entropy) When 𝜓𝖠𝖡 is diagonal (i.e., it corresponds to a
bipartite probability distribution 𝑝(𝑎, 𝑏)), 2−𝐻min(𝖠|𝖡)𝜓 =

∑︀
𝑏 𝑝(𝑏) max𝑎 𝑝(𝑎|𝑏), i.e., the maxi-

mum probability of guessing the state of 𝖠 given the state of 𝖡.

• (Max-entropy does not decrease after appending a state) For all density matrices 𝜎 ∈ S(𝖣),
we have 𝐻𝜖

max(𝖠)𝜓 ≤ 𝐻𝜖
max(𝖠𝖣)𝜓⊗𝜎.

Proof. A proof of the duality relation can be found in [Tom13, Theorem 5.4]. The bounds for the
conditional min-entropy can be found in [Tom13, Proposition 4.3]; the bounds on the conditional
max-entropy follow via the duality relation. The isometric invariance property follows directly from
the definition of the (smoothed) conditional min-entropy. The min- versus 2-entropy bound is proved
in [Dup10, Lemma 2.3]. The operational interpretation of min-entropy is given in [KRS09]. The
fact that the max-entropy does not decrease after appending a state follows from [Tom13, Theorem
5.7], which states that the smoothed max-entropy is non-decreasing under trace-preserving quantum
operations; consider the quantum operation 𝜓𝖠 ↦→ 𝜓𝖠 ⊗ 𝜎𝖣, which is clearly trace-preserving.
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Having established the definitions and properties of these entropy measures, we can now state
and prove the characterization of the fundamental limits on one-shot compression for quantum
states.

Theorem 9.12 (Information-theoretic one-shot compression). For all 𝛿 > 0 and all density matrices
𝜌,

𝐻𝜖1
max(𝜌) ≤ 𝐾𝛿(𝜌) ≤ 𝐻𝜖2

max(𝜌) + 8 log
4

𝛿

where 𝜖1 := 2𝛿1/4 and 𝜖2 := (𝛿/40)4.

Proof. Lower bound. We first prove the lower bound 𝐻2𝛿1/4
max (𝜌) ≤ 𝐾𝛿(𝜌). Let (𝐸,𝐷) denote a

pair of quantum circuits that compresses 𝜌 to 𝑠 = 𝐾𝛿(𝜌) qubits with error 𝛿. Let |𝜓⟩𝖠𝖱 denote a
purification of 𝜌. Then using the Fuchs-van de Graaf inequality we get that

F
(︁
(𝐷 ∘ 𝐸)(𝜓), 𝜓

)︁
≥ 1− 2𝛿 . (9.9)

Let �̂� : 𝖠 → 𝖢𝖤, �̂� : 𝖢 → 𝖠𝖥 denote the unitary purifications of the channels corresponding to
𝐸 and 𝐷, respectively. Then by Uhlmann’s theorem, since (�̂��̂� ⊗ id𝖱) |𝜓⟩𝖱𝖠 is a purification of
(𝐷 ∘𝐸)(𝜓) and |𝜓⟩𝖠𝖱 is pure, Equation (9.9) implies that there exists a pure state |𝜃⟩𝖤𝖥 such that

1− 2𝛿 ≤ F
(︁
(𝐷 ∘ 𝐸)(𝜓), 𝜓

)︁
= F

(︁
(�̂� ∘ �̂�)(𝜓), 𝜓𝖠𝖱 ⊗ 𝜃𝖤𝖥

)︁
≤ F

(︁
Tr𝖡𝖢

(︁
�̂� ∘ �̂�(𝜓)

)︁
, 𝜌𝖠 ⊗ 𝜃𝖥

)︁
.

The last inequality follows from monotonicity of the fidelity under partial trace. By Fuchs-van de
Graaf we have

td
(︁
Tr𝖡𝖢(�̂� ∘ �̂�(𝜓)), 𝜌𝖠 ⊗ 𝜃𝖥

)︁
≤
√
2𝛿 . (9.10)

Next consider the following entropy bounds using the properties given by Proposition 9.11:

𝑠 = dim(𝖢) ≥ −𝐻min(𝖢|𝖱𝖤)�̂�|𝜓⟩
= −𝐻min(𝖠𝖥|𝖱𝖤)�̂��̂�|𝜓⟩
= 𝐻max(𝖠𝖥)�̂��̂�|𝜓⟩

≥ 𝐻2𝛿1/4

max (𝖠𝖥)𝜌𝖡⊗𝜃𝖱

≥ 𝐻2𝛿1/4

max (𝖠)𝜌.

The first item follows from the bounds on min-entropy. The second line follows from the isometric
invariance of the min-entropy. The third line follows from the duality relation between min- and
max-entropy. The fourth line follows from the definition of the smoothed max-entropy (9.10) and
the relationship between the purified distance and trace distance [Tom13, Lemma 3.17]. The last
line follows from the fact that the smoothed max-entropy does not decrease when appending a state.
Putting everything together we have 𝐻2𝛿1/4

max (𝜌) ≤ 𝑠 = 𝐾𝛿(𝜌) as desired.

Upper bound. We now prove the upper bound, i.e., show that there exists a pair of circuits
(𝐸,𝐷) that compresses 𝜌 to 𝑠 := 𝐻𝜖

max(𝜌) + 4 log 8
𝛿 qubits with error 𝛿, where 𝜖 = 𝛿2/512. Let 𝜌𝖠𝖱

be an arbitrary purification of 𝜌 (with purifying register 𝖱).
We leverage the following decoupling theorem, which has been a ubiquitous tool in quantum

information theory. Informally, a decoupling theorem states that applying a Haar-random unitary
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to the 𝖠 system of a bipartite state 𝜌𝖠𝖱 and then tracing out an appropriately large subsystem of 𝖠
will result in the remainder of 𝖠 being decoupled (i.e., in tensor product) from the reference register
𝖱. There have been many decoupling theorems proved over the years (see, e.g., [HHWY08, Dup10,
DBWR14, BCT16]); we use the following one due to Dupuis (together with the standard fact that
Clifford unitaries form a 2-design).

Theorem 9.13 (Decoupling Theorem, Theorem 3.8 of [Dup10]). Let 𝜌𝖠𝖡 be a density matrix,
𝒯 : S(𝖠)→ S(𝖤) be a completely positive superoperator, 𝜔𝖤𝖠′ = (𝒯 ⊗ id𝖠′)(Φ𝖠𝖠′) (where Φ denotes
the maximally entangled state), and 𝜖 ≥ 0. Then∫︁

‖(𝒯 ∘ 𝑈)(𝜌𝖠𝖡)− 𝜔𝖤 ⊗ 𝜌𝖡‖1 d𝑈 ≤ 2−
1
2
𝐻𝜖

2(𝖠
′|𝖤)𝜔− 1

2
𝐻𝜖

2(𝖠|𝖡)𝜌 + 8𝜖

where the integral is over the uniform measure on Clifford unitary matrices acting on 𝖡, and 𝒯 ∘𝑈
denotes the superoperator where the input state is conjugated by 𝑈 first, and then 𝒯 is applied.

Define the following channel 𝒯 that acts on 𝖠: it measures the first 𝑛 − 𝑠 qubits of 𝖠 in the
standard basis to obtain a classical outcome 𝑦 ∈ {0, 1}𝑛−𝑠, traces out 𝖠, and outputs 𝑦 in register
𝖤. We now evaluate the state 𝜔𝖤𝖠′ = (𝒯 ⊗ id𝖠′)(Φ𝖠𝖠′). This can be seen to be

𝜔𝖤𝖠′ =
∑︁

𝑦∈{0,1}𝑛−𝑠
|𝑦𝑦⟩⟨𝑦𝑦|𝖤𝖠′

1
⊗ 2−𝑠 id𝖠′

2

where 𝖠′ is subdivided into two registers 𝖠′1𝖠
′
2 with 𝖠′1 isomorphic to 𝖤. The entropy 𝐻𝜖

2(𝖠
′|𝖤)𝜔

can be calculated as follows:

𝐻𝜖
2(𝖠
′|𝖤)𝜔 ≥ 𝐻2(𝖠

′|𝖤)𝜔 ≥ 𝐻min(𝖠
′|𝖤)𝜔 .

The first inequality follows from the definition of the smoothed 2-entropy. The second inequality
follows from Proposition 9.11. Note that 𝜔𝖠′𝖤 is a classical state (i.e., it is diagonal in the standard
basis); using the operational definition of the min-entropy in this case we see that 𝐻min(𝖠

′|𝖤) = 𝑠.
Now we bound the entropy 𝐻𝜖

2(𝖠|𝖱)𝜌. Since 𝜌𝖠𝖱 is pure, Proposition 9.11 gives us

−𝐻𝜖
2(𝖠|𝖱)𝜌 ≤ −𝐻𝜖

min(𝖠|𝖱)𝜌 = 𝐻𝜖
max(𝖠)𝜌 .

By Theorem 9.13, by averaging there exists a Clifford unitary 𝑈 such that

‖(𝒯 ∘ 𝑈)(𝜌𝖠𝖱)− 𝜔𝖤 ⊗ 𝜌𝖱‖1 ≤ 2−
1
2
(𝑠−𝐻𝜖

max(𝖠)𝜌) + 8𝜖 := 𝜈 .

Consider the following two purifications:

1. |Φ⟩𝖤𝖤′⊗|𝜌⟩𝖠𝖱 where |Φ⟩𝖤𝖤′ denotes the maximally entangled state on two isomorphic registers
𝖤,𝖤′. This is a purification of the density matrix 𝜔𝖤 ⊗ 𝜌𝖱.

2. |𝜃⟩𝖤𝖤′𝖢𝖱𝖥 :=
∑︀

𝑦 |𝑦⟩𝖤 ⊗ (Π𝑦𝑈 ⊗ id𝖱) |𝜌⟩𝖠𝖱 ⊗ |0⟩𝖥 where Π𝑦 is the projection that maps 𝖠 into
𝖤′𝖢 with 𝖢 being an 𝑠 qubit register and 𝖤′ being 𝑛 − 𝑠 qubit register, projecting the first
𝑛 − 𝑠 qubits of 𝖠 into the |𝑦⟩ state. The register 𝖥 is isomorphic to 𝖤 and is used to ensure
that the dimensions of both purifications are the same. This is a purification of (𝒯 ∘𝑈)(𝜌𝖠𝖱).
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By Fuchs-van de Graaf and Uhlmann’s theorem there exist a partial isometry 𝑉 mapping reg-
isters 𝖤′𝖠 to 𝖢𝖤′𝖥 such that

td
(︁
𝑉 (Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱)𝑉 † , 𝜃𝖤𝖤′𝖢𝖱𝖥

)︁
≤
√
2𝜈 .

Let Ξ be an arbitrary channel completion of 𝑉 . We show that Ξ can be used in place of 𝑉 with
small error. Let 𝑃 denote the projection onto the support of 𝑉 . Then we have⃒⃒⃒
Tr(𝑃 (Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱))− 1

⃒⃒⃒
≤ td

(︁
𝑃 (Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱)𝑃, 𝜃𝖤𝖤′𝖢𝖱𝖥

)︁
≤ td

(︁
𝑉 (Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱)𝑉 †, 𝜃𝖤𝖤′𝖢𝖱𝖥

)︁
≤
√
2𝜈 .

Let 𝜏 denote the post-measurement state of Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱 after measuring the projector 𝑃 ; by the
Gentle Measurement Lemma [Win99] we have td(𝜏,Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱) ≤ 4𝜈1/4. Thus

td
(︁
Ξ(Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱) , 𝜃𝖤𝖤′𝖢𝖱𝖥

)︁
≤ td

(︁
Ξ(Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱) , Ξ(𝜏)

)︁
+ td

(︁
Ξ(𝜏), 𝑉 𝜏𝑉 †

)︁
+ td

(︁
𝑉 𝜏𝑉 †, 𝑉 (Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱)𝑉 †

)︁
+ td

(︁
𝑉 (Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱)𝑉 † , 𝜃𝖤𝖤′𝖢𝖱𝖥

)︁
≤ 4𝜈1/4 + 4𝜈1/4 +

√
2𝜈 ≤ 10𝜈1/4 , (9.11)

where we used that Ξ(𝜏) = 𝑉 𝜏𝑉 † by definition of channel completion.
Similarly, let Λ be an arbitrary channel completion of the partial isometry 𝑉 †. A similar argu-

ment shows that
td
(︁
Φ𝖤𝖤′ ⊗ 𝜌𝖠𝖱 , Λ(𝜃𝖤𝖤′𝖢𝖱𝖥)

)︁
≤ 10𝜈1/4 .

We now continue with Ξ instead of 𝑉 and Λ instead of 𝑉 †. Applying the channel that measures
the register 𝖤 in the standard basis to both arguments of the left-hand side of Equation (9.11) and
using that the trace distance is non-increasing under quantum operations we have∑︁

𝑦

2−(𝑛−𝑠)td
(︁
Ξ(|𝑦⟩⟨𝑦|𝖤′ ⊗ |𝜌⟩⟨𝜌|𝖠𝖱) , 2

𝑛−𝑠𝛼𝑦 |𝑦⟩⟨𝑦|𝖤′ ⊗ |𝜌𝑈,𝑦⟩⟨𝜌𝑈,𝑦|𝖢𝖱 ⊗ |0⟩⟨0|𝖥
)︁
≤ 10𝜈1/4 ,

where 𝛼𝑦 := ‖Π𝑦𝑈 |𝜌⟩𝖠𝖱 ‖2 and the pure state |𝜌𝑈,𝑦⟩𝖱𝖢 is defined so that

𝛼−1/2𝑦 Π𝑦𝑈 |𝜌⟩𝖠𝖱 = |𝑦⟩𝖤′ ⊗ |𝜌𝑈,𝑦⟩𝖢𝖱 .

By averaging, there exists a 𝑦* ∈ {0, 1}𝑛−𝑠 such that

td
(︁
Ξ(|𝑦*⟩⟨𝑦*|𝖤′ ⊗ |𝜌⟩⟨𝜌|𝖠𝖱) , 2

𝑛−𝑠𝛼𝑦* |𝑦*⟩⟨𝑦*|𝖤′ ⊗ |𝜌𝑈,𝑦*⟩⟨𝜌𝑈,𝑦* |𝖢𝖱 ⊗ |0⟩⟨0|𝖥
)︁
≤ 10𝜈1/4 .

This also implies that |2𝑛−𝑠𝛼𝑦* − 1| ≤ 10𝜈1/4 so thus

td
(︁
Ξ(|𝑦*⟩⟨𝑦*|𝖤′ ⊗ |𝜌⟩⟨𝜌|𝖠𝖱) , |𝑦

*⟩⟨𝑦*|𝖤′ ⊗ |𝜌𝑈,𝑦*⟩⟨𝜌𝑈,𝑦* |𝖢𝖱 ⊗ |0⟩⟨0|𝖥
)︁
≤ 10𝜈1/4 . (9.12)

Define the following quantum circuits:

1. The circuit 𝐸 acts on register 𝖠 and behaves as follows: it appends the state |𝑦*⟩ in register
𝖤′, applies the channel Ξ, and then traces out registers 𝖤′𝖥. In other words, it implements the
following channel:

𝐸(𝜎𝖠) = Tr𝖤′𝖥

(︁
Ξ(|𝑦*⟩⟨𝑦*|𝖤′ ⊗ 𝜎𝖠)

)︁
.
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2. The circuit 𝐷 takes as input register 𝖢 and behaves as follows: it appends the state |𝑦*⟩ in
register 𝖤′ and |0⟩ in register 𝖥, applies the channel Λ, and then traces out register 𝖤′. In
other words, it implements the following channel:

𝐷(𝜏𝖢) = Tr𝖤′

(︁
Λ(|𝑦*⟩⟨𝑦*|𝖤′ ⊗ 𝜏𝖢 ⊗ |0⟩⟨0|𝖥)

)︁
.

Then Equation (9.12) implies that

td
(︁
𝐸(|𝜌⟩⟨𝜌|𝖠𝖱), |𝜌𝑈,𝑦*⟩⟨𝜌𝑈,𝑦* |𝖢𝖱

)︁
≤ 10𝜈1/4

td
(︁
|𝜌⟩⟨𝜌|𝖠𝖱 , 𝐷(|𝜌𝑈,𝑦*⟩⟨𝜌𝑈,𝑦* |𝖢𝖱)

)︁
≤ 10𝜈1/4 .

Put together this means

td
(︁
(𝐷 ∘ 𝐸)(|𝜌⟩⟨𝜌|𝖠𝖱), |𝜌⟩⟨𝜌|𝖠𝖱

)︁
≤ 20𝜈1/4 .

Although we have defined the circuits 𝐸,𝐷 in terms of the purification |𝜌⟩𝖠𝖱, observe that Uhlmann’s
theorem implies that the same circuits works for all purifications of 𝜌𝖠. Thus, since the output of
channel 𝐸 is register 𝖢 which has size 𝑠 qubits, this shows that (𝐸,𝐷) compresses 𝜌 to 𝑠 qubits
with error 20𝜈1/4. By our choice of 𝑠 = 𝐻𝜖

max(𝖡)𝜌 + 8 log 4
𝛿 and 𝜖 = (𝛿/40)4, this error is at most

𝛿.

We note that for tensor product states 𝜌⊗𝑘, the smoothed max-entropy converges to the well-
known von Neumann entropy:

lim
𝜖→0

lim
𝑘→∞

1

𝑘
𝐻𝜖

max(𝜌
⊗𝑘) = 𝐻(𝜌) .

This is an instance of the quantum asymptotic equipartition property, which roughly states that the
min, max, and Rényi entropies approach the von Neumann entropy in the limit of many copies of
a state [TCR09].20 Thus Theorem 9.12 applied to tensor product states 𝜌⊗𝑘 recovers Schumacher
compression [Sch95], using a proof that does not appeal to typical subspaces and the method of
types.

9.2.2 Complexity of near-optimal compression

We now initiate the study of the computational complexity of compressing to the information-
theoretic limit, i.e., to the smoothed max-entropy of a state. We begin by defining compression as
a computational task.

Definition 9.14 (Compression as a computational task). Let 𝜖, 𝜂 : ℕ → [0, 1] be functions. Let
𝐸 = (𝐸𝑥)𝑥 and 𝐷 = (𝐷𝑥)𝑥 be quantum algorithms. We say that (𝐸,𝐷) compresses to the 𝜖-
smoothed max-entropy with error 𝜂 if for all 𝑥 = (1𝑛, 𝐶) where 𝐶 is a quantum circuit that outputs 𝑛
qubits, we have that (𝐸𝑥, 𝐷𝑥) compresses 𝜌𝑥 := 𝐶(|0 . . . 0⟩⟨0 . . . 0|) to at most 𝐻𝜖(𝑛)

max(𝜌𝑥)+𝑂(log 1
𝜖(𝑛))

qubits with error at most 𝜂(𝑛).
20In fact, one can give stronger quantitative bounds on the convergence to the von Neumann entropy as a function

of the number of copies 𝑘 and the error 𝜖.
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This brings us to the main result of the section, which are upper and lower bounds on the
complexity of the compression task.

Theorem 9.15 (Near-optimal compression via Uhlmann transformations). Let 𝜖(𝑛) be a negligible
function. If DistUhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒, then for all polynomials 𝑞(𝑛) there exists
a pair of non-uniform polynomial-time algorithms (𝐸,𝐷) that compresses to the 𝜖-smoothed max-
entropy with error 𝜂(𝑛) = 1/𝑞(𝑛).

Proof. Let 𝑥 = (1𝑛, 𝐶) where 𝐶 is a quantum circuit that outputs 𝑛 qubits, and let 𝜌𝑥 =
𝐶(|0 . . . 0⟩⟨0 . . . 0|). Let 𝜖 = 𝜖(𝑛). The proof of the upper bound of Theorem 9.12 involves the
following two states:

|𝐹 ⟩ := |Φ⟩𝖤𝖤′ ⊗ |𝜌⟩𝖠𝖱 ,

|𝐺⟩ :=
∑︁
𝑦

|𝑦⟩𝖤 ⊗ (Π𝑦𝑈 ⊗ id𝖱) |𝜌⟩𝖠𝖱 ⊗ |0⟩𝖥 .

(The state |𝐺⟩ was called |𝜃⟩ in Theorem 9.12). Here, |Φ⟩𝖤𝖤′ denotes the maximally entangled state
on 𝖤𝖤′, |𝜌⟩𝖠𝖱 is the pure state resulting from evaluating a purification of the circuit 𝐶 on the all
zeroes input, the projector Π𝑦 denotes projecting the first 𝑛− 𝑠 qubits of register 𝖠 onto |𝑦⟩, and 𝑈
is a Clifford unitary. Note that |𝐹 ⟩ , |𝐺⟩ can be prepared by circuits 𝐹,𝐺 whose sizes are polynomial
in 𝑛 and in the size of 𝐶; this uses the fact that Clifford unitaries can be computed by a circuit of
size 𝑂(𝑛2) [AG04].

The proof of Theorem 9.12 shows that the reduced density matrices of |𝐹 ⟩ , |𝐺⟩ on registers
𝖤𝖠 have fidelity at least 1 − 2𝜈 = 1 − 𝜖2/16 ≥ 1 − 𝜖. Thus (1𝑚, 𝐹,𝐺) is a valid Uhlmann1−𝜖
instance. Since DistUhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒 by assumption there exists poly(𝑛, |𝐶|)-
size circuit 𝐿 mapping registers 𝖤′𝖠 to 𝖤′𝖢𝖥 and a channel completion Ξ of the canonical Uhlmann
transformation 𝑉 corresponding to (|𝐹 ⟩ , |𝐺⟩) such that

td
(︁
(id⊗ 𝐿)(|𝐹 ⟩⟨𝐹 |), (id⊗ Ξ)(|𝐹 ⟩⟨𝐹 |)

)︁
≤ 1

𝑟(𝑛)

where 𝑟(𝑛) is a polynomial such that 2/𝑟(𝑛) + 𝜖(𝑛) ≤ 1/𝑞(𝑛), which is possible because 𝜖(𝑛) is a
negligible function. Similarly there exists a poly(𝑛, |𝐶|)-size circuit 𝑀 and a channel completion Λ
of the Uhlmann transformation 𝑉 † corresponding to (|𝐺⟩ , |𝐹 ⟩) such that

td
(︁
(id⊗𝑀)(|𝐺⟩⟨𝐺|), (id⊗ Λ)(|𝐺⟩⟨𝐺|)

)︁
≤ 1

𝑟(𝑛)
.

The proof of Theorem 9.12 shows shows that there exists a pair of circuits (𝐸*𝑥, 𝐷
*
𝑥) that com-

presses 𝜌𝑥 to 𝑠 = 𝐻𝜖
max(𝜌𝑥) + 𝑂(log 1

𝜖 ) qubits with error 𝜖. Notice that the circuits 𝐸*𝑥, 𝐷*𝑥 are
poly(𝑛)-size circuits that make one call to channels Ξ,Λ, respectively. Now the idea is to “plug
in” the circuits 𝐿,𝑀 to implement the call to the channel Ξ,Λ, respectively. Let 𝐸𝑥, 𝐷𝑥 denote
the resulting poly(𝑛, |𝐶|)-sized circuits. Using 𝐿,𝑀 instead of the channels Ξ,Λ incurs at most
𝑂(1/𝑟(𝑛)) error, i.e., td

(︁
(𝐷𝑥 ∘ 𝐸𝑥)(|𝜌⟩⟨𝜌|𝖠𝖱), (𝐷*𝑥 ∘ 𝐸*𝑥)(|𝜌⟩⟨𝜌|𝖠𝖱)

)︁
≤ 2/𝑟(𝑛). Therefore

td
(︁
(𝐷𝑥 ∘ 𝐸𝑥)(|𝜌⟩⟨𝜌|𝖠𝖱), |𝜌⟩⟨𝜌|𝖠𝖱

)︁
≤ 2/𝑟(𝑛) + 𝜖(𝑛) ≤ 1/𝑞(𝑛) .

Letting 𝐸 = (𝐸𝑥)𝑥 and 𝐷 = (𝐷𝑥)𝑥 we get the desired pair of non-uniform polynomial-time
algorithms that compresses to the 𝜖-smoothed max entropy with inverse polynomial error.
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We now turn to proving a hardness result for near-optimal compression; it cannot be performed
in polynomial-time if stretch pseudorandom state (PRS) generators exist. Pseudorandom state
generators are a quantum analogue of classical pseudorandom generators (PRGs) and in fact can be
constructed from post-quantum pseudorandom generators [JLS18], but there is evidence that the
assumption of PRS is less stringent than the assumption of post-quantum PRGs [Kre21, KQST23].
We first recall the definition of a PRS generator:

Definition 9.16 (Pseudorandom state generator [JLS18, Definition 3]). We say that a (uniform)
polynomial-time algorithm 𝐺 = (𝐺𝜆)𝜆 is a pseudorandom state (PRS) generator if the following
holds.

1. (State generation). For all 𝜆, on input 𝑘 ∈ {0, 1}𝑘 the algorithm 𝐺 outputs

𝐺𝜆(𝑘) = |𝜓𝑘⟩⟨𝜓𝑘|

for some 𝑚(𝜆)-qubit pure state |𝜓𝑘⟩.

2. (Strong pseudorandomness). For all polynomials 𝑡(𝜆) and non-uniform polynomial-time dis-
tinguishers 𝐴 = (𝐴𝜆)𝜆 there exists a negligible function 𝜖(𝜆) such that for all 𝜆, we have⃒⃒⃒⃒

⃒ Pr
𝑘←{0,1}𝜆

[︁
𝐴
𝑂𝜓𝑘
𝜆 (𝐺𝜆(𝑘)

⊗𝑡(𝜆)) = 1
]︁
− Pr
|𝜗⟩←Haar𝑚(𝜆)

[︁
𝐴𝑂𝜗𝜆 (|𝜗⟩⟨𝜗|⊗𝑡(𝜆)) = 1

]︁⃒⃒⃒⃒⃒ ≤ 𝜖(𝜆),
where 𝑂𝜓 := id− 2 |𝜓⟩⟨𝜓| is the reflection oracle for |𝜓⟩.

We say that 𝐺 is a stretch PRS generator if 𝑚(𝜆) > 𝜆.

Here we use the strong pseudorandomness guarantee, which is known to be equivalent to the
weaker (standard) pseudorandomness guarantee where the adversary does not get access to the
reflection oracle [JLS18, Theorem 4]. We also note that PRS generators do not necessarily provide
any stretch; there are nontrivial PRS generators where the output length 𝑚(𝜆) can be smaller
than the key length 𝜆. Furthermore, unlike classical PRGs, it is not known whether PRS can be
generically stretched (or shrunk); see [AQY22] for a longer discussion of this.

We now state our hardness result.

Theorem 9.17 (Hardness of near-optimal compression). Let 𝜖(𝑛) be a function. Let 𝑚(𝜆) be a
function satisfying

𝑚(𝜆) > 𝜆+𝑂
(︁
log

1

𝜖(𝑚(𝜆))

)︁
+ 2

for all sufficiently large 𝜆. If stretch pseudorandom state generators that output 𝑚(𝜆) qubits exist,
then there is no non-uniform polynomial-time algorithm (𝐸,𝐷) that compresses to the 𝜖-smoothed
max-entropy with error 1

2 .

Proof. Let 𝐺 be a PRS generator that outputs 𝑚(𝜆)-qubit states for 𝑚(𝜆) satisfying the conditions
stated in Theorem 9.17, and fix a sufficiently large 𝜆 ∈ ℕ for which the condition is satisfied. Define
the pure state |𝜙𝜆⟩ that represents running a unitary purification of the generator 𝐺 coherently
with the keys 𝑘 in superposition:

|𝜙𝜆⟩𝖪𝖰𝖠 := 2−𝜆/2
∑︁

𝑘∈{0,1}𝜆
|𝑘⟩𝖪 ⊗ |𝜏𝜆⟩𝖰 ⊗ |𝜓𝑘⟩𝖠
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where |𝜓𝑘⟩ denotes the pseudorandom state output by 𝐺 on key 𝑘, and |𝜏𝑘⟩ denotes the state of the
ancilla qubits of 𝐺. Let 𝖱 := 𝖪𝖰. The reduced density matrix of |𝜙𝜆⟩ on register 𝖠 is the following
mixed state:

𝜌𝜆 := 2−𝜆
∑︁

𝑘∈{0,1}𝜆
|𝜓𝑘⟩⟨𝜓𝑘| .

By the second item of Proposition 9.11 we have 𝐻𝜖
max(𝜌𝜆) ≤ 𝜆.

Assume for contradiction that there exists a polynomial-time pair of quantum algorithms (𝐸,𝐷)
that compresses to the 𝜖-smoothed max-entropy with error 1

2 . Let 𝑥 = (1𝑛, 𝐶) where 𝐶 outputs the
state 𝜌𝜆 by first synthesizing the state |𝜙𝜆⟩ and then tracing out register 𝖱. Clearly 𝐶 is a poly(𝜆)-
sized circuit. Therefore (𝐸𝑥, 𝐷𝑥) runs in poly(𝜆) time and compresses 𝜌𝜆 to 𝑟𝜆 := 𝐻𝜖

max(𝜌𝜆) +

𝑂
(︁
log 1

𝜖(𝑚(𝜆))

)︁
≤ 𝜆+𝑂

(︁
log 1

𝜖(𝑚(𝜆))

)︁
qubits. By assumption we have

td
(︁
(𝐷𝑥 ∘ 𝐸𝑥)(|𝜙𝜆⟩⟨𝜙𝜆|), |𝜙𝜆⟩⟨𝜙𝜆|

)︁
≤ 1

2
.

By measuring register 𝖪 and tracing out register 𝖰 on both arguments (which does not increase the
trace distance), we have that

𝔼
𝑘
td
(︁
(𝐷𝑥 ∘ 𝐸𝑥)(|𝜓𝑘⟩⟨𝜓𝑘|) , |𝜓𝑘⟩⟨𝜓𝑘|

)︁
≤ 1

2
. (9.13)

Now consider the following distinguisher 𝐴 = (𝐴𝜆)𝜆: it gets as input |𝜃⟩ where |𝜃⟩ is either |𝜓𝑘⟩ for
a randomly sampled 𝑘 or |𝜗⟩ sampled from the Haar measure; it also gets access to a (controlled)
reflection oracle 𝑂𝜃 = id− 2 |𝜃⟩⟨𝜃|. It then

1. applies the channel 𝐷𝑥 ∘ 𝐸𝑥 to input |𝜃⟩;

2. measures {|𝜃⟩⟨𝜃| , id− |𝜃⟩⟨𝜃|} using the reflection oracle, and accept if measurement accepts.

From Equation (9.13) we have that, since the measurement step with respect to 𝑂𝜓𝑘 accepts on
|𝜓𝑘⟩ with probability 1, then 𝐴𝜆 with oracle access to 𝑂𝜓𝑘 accepts |𝜓𝑘⟩ with probability at least
1− 𝜂 over the choice of key 𝑘 and the randomness of 𝐴𝜆.

Now consider what happens when we run 𝐴𝜆 with |𝜗⟩ as input where |𝜗⟩ is sampled from the
Haar measure, as well as with the reflection oracle 𝑂𝜗. Since 𝐴 runs in poly(𝜆) time, by the
pseudorandomness property of 𝐺 the probability that 𝐴𝜆 accepts |𝜗⟩ is at least 1

2 − negl(𝜆).
On the other hand we show that since a Haar-random state cannot be compressed, 𝐴𝜆 cannot

accept with high probability. Let 𝑅 := 2𝑟𝜆 denote the dimensionality of the output of 𝐸𝜆, and
let 𝑀 = 2𝑚(𝜆) denote the dimensionality of register 𝖠. For brevity we abbreviate 𝐸𝑥, 𝐷𝑥 as 𝐸,𝐷
respectively. The success probability of 𝐴𝜆 given a Haar-random state |𝜗⟩ and the reflection oracle
𝑂𝜗 can be calculated as follows. First, observe that∫︁

𝜗
Tr
(︁
(𝐷 ∘ 𝐸)(|𝜗⟩⟨𝜗|) |𝜗⟩⟨𝜗|

)︁
d𝜗 =

∫︁
𝜗
Tr
(︁
𝐸(|𝜗⟩⟨𝜗|)𝐷*(|𝜗⟩⟨𝜗|)

)︁
d𝜗

where 𝐷* denotes the adjoint channel corresponding to 𝐷; it is the unique superoperator mapping
register 𝖠′ to 𝖡 satisfying Tr(𝑋𝐷(𝑌 )) = Tr(𝐷*(𝑋)𝑌 ) for all operators 𝑋,𝑌 . Viewing 𝐸 ⊗𝐷* as
a superoperator mapping registers 𝖠1𝖠2 to 𝖡1𝖡2 and letting 𝑆𝖡1𝖡2 denote the swap operator on
registers 𝖡1𝖡2 the above is equal to

Tr
(︁
𝑆𝖡1𝖡2(𝐸 ⊗𝐷*)(

∫︁
𝜗
|𝜗⟩⟨𝜗|⊗2 d𝜗)

)︁
.

110



Now, it is well-known [Har13] that the integral over two copies of an 𝑚(𝜆)-qubit Haar-random state
is proportional to the projector 1

2(id + 𝑆) onto the symmetric subspace of (ℂ𝑀 )⊗2. The dimension
of the projector is 𝑀(𝑀 + 1)/2. Thus the above is equal to

1

𝑀(𝑀 + 1)
Tr
(︁
𝑆𝖡1𝖡2 (𝐸 ⊗𝐷*)(id𝖠1𝖠2 + 𝑆𝖠1𝖠2)

)︁
≤ 1

𝑀(𝑀 + 1)
Tr
(︁
(𝐸 ⊗𝐷*)(id𝖠1𝖠2 + 𝑆𝖠1𝖠2)

)︁
=

1

𝑀(𝑀 + 1)

[︁
Tr
(︁
(𝐸 ⊗𝐷*)(id𝖠1𝖠2)

)︁
+Tr

(︁
(𝐸 ⊗𝐷*)(𝑆𝖠1𝖠2)

)︁]︁
=

1

𝑀(𝑀 + 1)

[︁
Tr
(︁
id𝖠1 ⊗𝐷*(id𝖠2)

)︁
+Tr

(︁
(id𝖠1 ⊗𝐷*)(𝑆𝖠1𝖠2)

)︁]︁
=

1

𝑀(𝑀 + 1)

[︁
Tr
(︁
id𝖠1

)︁
Tr
(︁
𝐷*(id𝖠2)

)︁
+Tr

(︁
𝐷*(id𝖠2)

)︁]︁
=

1

𝑀(𝑀 + 1)

[︁
𝑅𝑀 +𝑅

]︁
= 𝑅/𝑀 = 2−(𝑚(𝜆)−𝜆−𝑂(log 1/𝜖)) ≤ 1

4
.

The second line follows from the fact that |Tr(𝐴†𝐵)| ≤ ‖𝐴‖∞‖𝐵‖1 for all operators 𝐴,𝐵 and
‖𝑆‖∞ ≤ 1. The fourth line follows from the fact that 𝐸 is a trace-preserving superoperator. The
sixth line follows from the fact that since 𝐷 is a channel that takes as input 𝖡, Tr(𝐷*(id𝖠2)) =
Tr(id𝖡) = 𝑅. The last line follows because our assumption about the stretch of the PRS. This
shows that the acceptance probability of 𝐴𝜆 given a Haar random state and access to its reflection
oracle is at most 1

4 , which is less than 1
2 − negl(𝜆) for sufficiently large 𝜆.

Thus we have arrived at a contradiction. There is no polynomial-time pair of algorithms that
compresses to the 𝜖-smoothed max entropy.

We compare our hardness result with the upper bound proved in Theorem 9.15. As an example,
let 𝜖(𝑛) = 2− log2(𝑛), which is a negligible function. Then roughly, if DistUhlmann1−𝜖 is easy,
then compressing to 𝐻𝜖

max(𝜌) +𝑂(log 1/𝜖) = 𝐻𝜖
max(𝜌) +𝑂(log2(𝑛)) is easy. On the other hand, the

lower bound shows that if PRS generators with output length 𝑚(𝜆) ≥ 𝜆 + Ω(log2(𝜆)) exist, then
compressing to 𝐻𝜖

max(𝜌) +𝑂(log2(𝑛)) is not easy.
We remark that it should be possible to base the lower bound on seemingly weaker assumptions,

such as one-way state generators [MY22b]. However, ideally we would be able to base the hardness
on an assumption such as the existence of quantum commitments or the hardness of the Uhlmann
transformation problem, which would give a true converse to the upper bound of Theorem 9.15.
However the main issue is verifiability : with pseudorandom states or one-way state generators (with
pure-state outputs), one can check whether the state has been compressed and decompressed; it is
not clear whether this is possible with quantum commitments. We leave it as an open problem to
prove matching upper and lower complexity bounds on compression.

Open Problem 21. Is the complexity of optimal compression equivalent to the complexity of the
Uhlmann Transformation Problem?
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9.3 Complexity of classical Shannon tasks?

Given the results in this section, the reader may naturally wonder about the complexity of classical
Shannon tasks. For example, one can consider the problems of decoding noisy classical channels
and optimally compressing classical information. The complexity of both these tasks appears to
be essentially equivalent to the existence of one-way functions, which provides some evidence that
the hardness of the Uhlmann Transformation Problem could be regarded as the natural quantum
analogue of the existence of one-way functions.

We sketch this equivalence for these two Shannon theory problems. The classical analogue of the
Decodable Channel Problem is as follows. A decodable classical channel 𝑁 is a classical circuit that
takes as input two strings (𝑥, 𝑟) where both 𝑥 and 𝑟 are sampled from the uniform distribution, and
outputs a string 𝑦 such that with high probability over (𝑥, 𝑟), the original message 𝑥 is information-
theoretically recoverable. The task is to recover the original message 𝑥 given the output 𝑦 of the
channel.

Impagliazzo and Levin [IL89] showed that if all one-way functions can be inverted in polynomial
time with high probability, then there exists a distributional inverter that, given an output 𝑦 of
the channel 𝑁 , finds a uniformly random preimage (𝑥, 𝑟). The decodability of 𝑁 ensures that the
computed 𝑥 is the original message with high probability. Conversely, if one-way functions exist
then pseudorandom generators exist [HILL99]. The channel 𝑁 that takes the input 𝑥 and computes
a pseudorandom generator on it is not efficiently decodable in polynomial time.

We now turn to compression. Interestingly, the complexity of compression – and other Shan-
non theory tasks – was already discussed in Yao’s seminal 1982 paper introducing the theory of
pseudorandomness [Yao82]. In modern day terms, Yao argued that the existence of pseudorandom
generators (which follows from the existence of one-way functions [HILL99]) gives rise to efficiently
sampleable distributions 𝑋 that cannot be efficiently compressed to their Shannon entropy 𝐻(𝑋).
Conversely, a recent work of [HMS23] shows that if one-way functions do not exist, every efficiently
sampleable distribution 𝑋 can be compressed to a prefix-free encoding of at most 𝐻(𝑋) + 2 bits.

These two examples motivate asking the broader question: what is the complexity of other
fundamental classical Shannon theory tasks, such as obtaining capacity-achieving encoders and
decoders for a given classical channel (which is provided in the form of a randomized circuit), or
performing distributed source coding? Is the complexity of these tasks all equivalent to the hardness
of one-way functions? To our knowledge there has not been a systematic study of the complexity
of classical Shannon theory tasks, aside from a few isolated discussions [Yao82, Lip94].

Open Problem 22. Can the complexity of classical Shannon theory tasks be characterized?

9.4 Open problems

We end this section with some additional open questions. First, the complexity result about com-
pression is stated in terms of the non-uniform complexity class 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯/𝗉𝗈𝗅𝗒. The main
reason for this is that the upper bound (i.e., if DistUhlmann is easy, then compression is also
easy) involves hardcoding some information that depends on the instance of the problem.

Open Problem 23. Can the assumptions in the upper bound result for compression (Theo-
rem 9.15) be improved to be about uniform unitary complexity classes (namely, 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯)?

This may require finding a new proof approach for the upper bound.
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In this section we considered two basic quantum Shannon theory tasks. There are many more
that have been studied information-theoretically (including a whole family tree of them [ADHW09]),
and one can ask about the complexity of each of these tasks.

Open Problem 24. What is the complexity of other quantum Shannon theory tasks, such as
achieving capacity over a noisy channel, entanglement distillation, or quantum state redistribution?

We remark that the problem of proving complexity lower bounds on entanglement distillation ap-
pears to be conceptually challenging as it requires reasoning about LOCC protocols.

10 Applications to Computational Tasks in High-Energy Physics

In this section, we discuss connections between the Uhlmann Transformation Problem and com-
putational tasks motivated by questions in high-energy physics. We first discuss the black hole
radiation decoding task, which was introduced by Harlow and Hayden [HH13]. We argue that the
complexity of this task is characterized by the complexity of the distributional Uhlmann Trans-
formation Problem. Then, we discuss the interference detection task as formalized by Aaronson,
Atia, and Susskind [AAS20]: this is the problem of detecting the interference between two orthog-
onal states |𝜓⟩ and |𝜙⟩, i.e. whether the states are in an equal plus or minus superposition. One
of the motivations for considering this problem is the task of physically distinguishing between
superpositions of spacetime geometries in the AdS/CFT correspondence [AAS20]. We show that
solving the interference detection problem between two orthogonal 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 states reduces to
SuccinctUhlmann1 in polynomial time.

10.1 Black hole radiation decoding

The black hole radiation decoding task is motivated by the following thought experiment of Almheiri,
Marolf, Polchinski, Sully [AMPS13]: imagine that Alice creates a maximally entangled pair of qubits
|EPR⟩ = 1√

2
(|00⟩+|11⟩) and throws one half into a newly-formed black hole. After a long time, Alice

could potentially decode the Hawking radiation of the black hole and recover the qubit she threw
in. However, Alice could then jump into the black hole and find another qubit that is supposed
to be maximally entangled with the qubit that was not thrown in – witnessing a violation of the
monogamy of entanglement. These conclusions were derived assuming supposedly uncontroversial
principles of quantum field theory and general relativity.

Harlow and Hayden proposed a resolution to this paradox via a computational complexity ar-
gument [HH13]: it may not be feasible for Alice to decode the black hole’s Hawking radiation in
any reasonable amount of time — by the time she decodes the qubit that she threw in, the black
hole may have evaporated anyways! They argued that, assuming 𝖲𝖹𝖪 ̸⊆ 𝖡𝖰𝖯 – note that these are
classes of decision problems — a formulation of the black hole radiation decoding task cannot be
done in polynomial time.

What about the converse? That is, does a traditional complexity class statement such as 𝖲𝖹𝖪 ⊆
𝖡𝖰𝖯 imply that the black hole radiation decoding task is solvable in polynomial time? As pointed
out by Aaronson [Aar16], it is not even clear that the black hole radiation decoding task is easy even
if we assume 𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤. As with all the other “fully quantum” tasks considered in this paper,
it appears difficult to characterize the complexity of the black hole decoding problem in terms of
traditional notions from complexity theory.
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Brakerski recently gave a characterization of the hardness of the black hole radiation task in
terms of the existence of a cryptographic primitive known as quantum EFI pairs [Bra23], which are in
turn equivalent to quantum commitments (as well as many other quantum cryptographic primitives,
see [BCQ23] for an in-depth discussion). Given the discussion in Section 8 that connects quantum
commitments with the Uhlmann Transformation Problem, one would then expect an equivalence
between black hole radiation decoding and the Uhlmann Transformation Problem.

We spell out this equivalence by showing that complexity of the black hole radiation decoding
task is the same as the complexity of the Decodable Channel Problem, which we showed to be
equivalent to the (distributional) Uhlmann Transformation Problem in Section 9.1. We believe that
the direct reduction to and from the Decodable Channel Problem is natural, and may be useful to
those who are more comfortable with quantum Shannon theory.

We first describe a formulation of the black hole radiation decoding task, which is an adaptation
of the formulations of [HH13, Bra23].

𝐻early

𝑅early

𝐵

𝐴

𝐻old

𝑅old

𝐵

𝐻old

𝑅′old

𝐵

𝐴

(a) (b) (c)

Figure 4: Decoding black hole radiation. (a) Qubit 𝐴, maximally entangled with qubit 𝐵, falls into
an early black hole 𝐻early, which is entangled with some early Hawking radiation 𝑅early. (b) After
evaporating much of its mass, the old black hole 𝐻old is entangled with the radiation 𝑅old which is
entangled with the qubit 𝐵. (c) By performing a computation on the radiation only, the partner
qubit 𝐴 can be decoded.

Definition 10.1 (Decodable black hole states). Let 𝑃 denote a unitary quantum circuit mapping
registers 𝖠𝖦 to 𝖧𝖱 where 𝖠 is a single qubit register. Consider the state

|𝜓⟩𝖡𝖧𝖱 := (id𝖡 ⊗ 𝑃𝖠𝖦→𝖧𝖱) |EPR⟩𝖡𝖠 ⊗ |0⟩𝖦 .

We say that |𝜓⟩ is an 𝜖-decodable black hole state if there exists a quantum circuit 𝐷 that takes as
input register 𝖱 and outputs a qubit labelled 𝖠, such that letting 𝜌𝖧𝖡𝖠 denote the state (id⊗𝐷)(|𝜓⟩⟨𝜓|),
we have

F
(︁
|EPR⟩⟨EPR|𝖠𝖡 , 𝜌𝖠𝖡

)︁
≥ 1− 𝜖

i.e., measuring the registers 𝖡𝖠 in the Bell basis yields the state |EPR⟩ := 1√
2
(|00⟩ + |11⟩) with

probability at least 1− 𝜖. We say that the circuit 𝐷 is a 𝜖-decoder for the state |𝜓⟩.

The circuit 𝑃 generating the decodable black hole state can be thought of as a unitary that
encodes the laws of black hole evolution: given a qubit in register 𝖠 and a fixed number of ancilla
qubits, it forms a black hole in register 𝖧 as well as the outgoing Hawking radiation in register 𝖱. The
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decodability condition implies that, by acting on the radiation only, it is information-theoretically
possible to decode the original qubit that was input. See Figure 4 for an illustration of black hole
radiation decoding. We formalize black hole radiation decoding as a computational task.

Definition 10.2 (Black hole radiation decoding task). Let 𝜖(𝑛), 𝛿(𝑛) be functions. We say that
a quantum algorithm 𝐷 = (𝐷𝑥)𝑥 solves the 𝜖-black hole radiation decoding task with error 𝛿 if
for all 𝑥 = (1𝑛, 𝑃 ) where 𝑃 is a unitary quantum circuit acting on 𝑛 qubits and gives rise to an
𝜖(𝑛)-decodable black hole state |𝜓⟩, the circuit 𝐷𝑥 is a 𝛿(𝑛)-decoder for |𝜓⟩.

We now prove that the task of black hole radiation decoding in Definition 10.2 is equivalent to
the Decodable Channel Problem in Definition 9.5, which results in the following theorem.

Theorem 10.3. DistUhlmann1−𝜖 ∈ 𝖺𝗏𝗀𝖴𝗇𝗂𝗍𝖺𝗋𝗒𝖡𝖰𝖯 for all negligible functions 𝜖(𝑛) if and only if
for all inverse polynomials 𝛿(𝑛) the 𝜖(𝑛)-black hole radiation decoding task is solvable in polynomial-
time with error 𝛿(𝑛).

Proof. We prove this via reduction to the Decodable Channel Problem described in Section 9.1.
First, observe (from the proof) that the statement in Theorem 9.6 still holds when considering
instances of the 𝜖-Decodable Channel Problem of the form 𝑦 = (11, 1𝑟, 𝐶), i.e., where we restrict
𝐶 to single qubit inputs only. Define the following bijection 𝜙: for every 𝑥 = (1𝑛, 𝑃 ), where
𝑃 : 𝖠𝖦→ 𝖧𝖱 is a unitary quantum circuit acting on 𝑛 qubits and where 𝑟 is the size of the register
𝖱, define 𝜙(𝑥) = (11, 1𝑟, 𝑃 ), where 𝑃 is the quantum circuit first appends 𝑛 − 1 qubits initialized
to |0⟩ to its input and then runs 𝑃 .

It is clear that 𝑥 corresponds to an 𝜖-decodable black hole state if and only if 𝜙(𝑥) corresponds
to an 𝜖-decodable channel: the channel can be viewed as taking the input qubit, dumping it in the
black hole, and the outputting the radiation emitted by the black hole. Decoding the EPR pair from
the channel associated with 𝑃 exactly corresponds to decoding the EPR pair from the black hole
associated with 𝑃 . Therefore, the claim follows from Theorem 9.6, which shows that the complexity
of the Decodable Channel Problem is equivalent to the complexity of DistUhlmann.

Remark 10.4. We remark that Brakerski proved a stronger theorem by relating the black hole
radiation task to EFI [BCQ23]. For simplicity, we focus on the task of decoding the EPR pair with
fidelity 1 − 𝜖, for a small 𝜖, whereas Brakerski [Bra23] used amplification to boost weak decoders
that succeed with fidelity much smaller than 1.

10.2 Interference detection

In this section, we consider the computational task of interference detection between orthogonal
𝖯𝖲𝖯𝖠𝖢𝖤 states. Aaronson, Atia, and Susskind [AAS20] recently proved the following folklore obser-
vation, sometimes called the swapping-distinguishing equivalence: if one can detect the interference
between two orthogonal states |𝜓⟩ and |𝜙⟩, i.e. whether the states are in an equal superposition

|𝜓⟩+ |𝜙⟩√
2

and
|𝜓⟩ − |𝜙⟩√

2
,

then one can also swap between |𝜓⟩ and |𝜙⟩, and vice versa. We first review the swapping-
distinguishing equivalence shown by Aaronson, Atia, and Susskind [AAS20].

Theorem 10.5 ([AAS20], Theorem 1). Suppose that |𝜓⟩ and |𝜙⟩ are 𝑛-qubit orthogonal states.
Then, the following two statements are equivalent:
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• There exists a “swapping” unitary 𝑈 such that

𝑈 |𝜓⟩ = |𝜙⟩ and 𝑈 |𝜙⟩ = |𝜓⟩ .

• There exists an “interference detector” unitary 𝑉 that perfectly distinguishes between

|𝜓⟩+ |𝜙⟩√
2

and
|𝜓⟩ − |𝜙⟩√

2
.

Specifically, by “distinguish” we mean that 𝑉 takes one of the two states as input and stores
its guess for which state it received as the first qubit of its output.

Moreover, constructing 𝑉 from 𝑈 (and vice versa) only incurs a constant multiplicative factor in
terms of circuit complexity. The conversion uses the following circuits:

|0⟩ 𝐻 ∙ 𝐻 0/1

|𝜓⟩±|𝜙⟩√
2

𝑈

Circuit for interference detection
unitary 𝑉 using a controlled-swap

(controlled-𝑈) operation.

𝑉

𝑍

𝑉 †...
...

Circuit for swapping unitary 𝑈 using
the interference detection unitary 𝑉

and its inverse.

We now formalize the task of detecting interference between orthogonal states as the following
problem, where the input consists of two orthogonal 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 states.

Definition 10.6 (Interference detection between orthogonal 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 states). We say that a
quantum algorithm 𝐴 = (𝐴𝑥)𝑥 solves the InterferenceDetection task if for all 𝑥 = (1𝑛, 𝐶, �̂�)
where 𝐶 and �̂� are succinct descriptions of unitary quantum circuits 𝐶 and 𝐷 acting on 𝑛 qubits such
that the states |𝐶⟩ := 𝐶 |0𝑛⟩ and |𝐷⟩ := 𝐷 |0𝑛⟩ are orthogonal, the circuit 𝐴𝑥 perfectly distinguishes
between the superpositions

|𝐶⟩+ |𝐷⟩√
2

and
|𝐶⟩ − |𝐷⟩√

2
.

Remark 10.7. One can also relax Definition 10.6 to allow the algorithm 𝐴 to distinguish between
the two superpositions imperfectly, but for simplicity we focus on the perfect case. We also note
that 𝐴 is solving a “quantum-input decision problem” in the sense that we only care about a single
bit of its output, but, in contrast to traditional decision problems, its input is one of two quantum
states.

The motivation behind this definition of InterferenceDetection is the following. It is an
interesting task only if the two states |𝐶⟩ , |𝐷⟩ for which we are trying to swap or determine the
phase are in some sense highly complex. For example if |𝐶⟩ , |𝐷⟩ were computable by polynomial
sized circuits then one could efficiently swap or detect the phase by applying 𝐶† and then checking
whether the result is all zeroes. On the other hand, suppose that |𝐶⟩ , |𝐷⟩ were the results of some
very long computations. An example that motivated Aaronson, Atia, and Susskind is if |𝐶⟩ , |𝐷⟩
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represent distinct spacetime geometries that were produced by a complex physical process (such as
black hole formation) after a long amount of time. What is the complexity of detecting whether
one is a superposition of the two spacetime geometries? Theorem 10.5 shows that this is the same
complexity as mapping from one spacetime to another.

Thus in our definition we incorporate the high complexity of the states |𝐶⟩ , |𝐷⟩ by allowing
them to be generated by a polynomial space computation. One could also consider the interference
detection problem for other classes of states; we leave this for future work.

We now upper bound the complexity of solving InterferenceDetection (for
𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 states). We show that InterferenceDetection polynomial-time reduces to
DistSuccinctUhlmann1, in a sense made precise in the following theorem.

Theorem 10.8. There exists a polynomial-time query algorithm 𝐴 with access to a
DistSuccinctUhlmann1 oracle that solves InterferenceDetection.

Proof. Consider an instance 𝑥 = (1𝑛, 𝐶, �̂�), where 𝐶,𝐷 are succinct descriptions of unitary quantum
circuits 𝐶,𝐷 such that |𝐶⟩ , |𝐷⟩ are orthogonal 𝑛 qubit states. First, we show how to construct
circuits 𝐶 ′, 𝐷′ to obtain a swapping unitary with

𝑈 |𝐶⟩ = |𝐷⟩ and 𝑈 |𝐷⟩ = |𝐶⟩

with a single call to the oracle for DistSuccinctUhlmann1. Next, we show how to modify 𝐶 ′

and 𝐷′ in order to obtain a controlled-𝑈 unitary instead which suffices for interference detection
according to the swapping and distinguishing equivalence from Theorem 10.5.

Let 𝖠 be a single-qubit register initialized to |0⟩, and let 𝖡 be an 𝑛-qubit register initialized to
|0𝑛⟩. We first construct circuits 𝐶, �̄� acting on 𝑛+ 1 qubits as follows:

𝖠 𝐻 ∙ ∙

𝖡 𝐶 𝐶† 𝐷

Circuit 𝐶

𝖠 𝐻 ∙ ∙

𝖡 𝐷 𝐷† 𝐶

Circuit �̄�

In other words, the circuits 𝐶, �̄� produce the following states

𝐶 |0⟩𝖠 ⊗ |0
𝑛⟩𝖡 =

1√
2
(|0⟩𝖠 ⊗ |𝐶⟩𝖡 + |1⟩𝖠 ⊗ |𝐷⟩𝖡) ,

�̄� |0⟩𝖠 ⊗ |0
𝑛⟩𝖡 =

1√
2
(|0⟩𝖠 ⊗ |𝐷⟩𝖡 + |1⟩𝖠 ⊗ |𝐶⟩𝖡) .

Since |𝐶⟩ and |𝐷⟩ are orthogonal, the reduced states in system 𝖠 are equal to id
2 in both cases.

Therefore, with a single call to the oracle for DistSuccinctUhlmann1 with respect to the circuits
𝐶 ′ and 𝐷′, we obtain swapping unitary 𝑈 ∈ L(𝖡) such that

𝑈 |𝐶⟩ = |𝐷⟩ and 𝑈 |𝐷⟩ = |𝐶⟩ .

We now construct circuits 𝐶 and �̃� which allow us to obtain a controlled-𝑈 operation with a single
call to DistSuccinctUhlmann1. The circuits are defined as follows:
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𝖠
𝐶

𝖡

𝖠′

𝖡′ 𝐻 ∙

Circuit 𝐶

𝖠
𝐶 𝐶† �̄�

𝖡

𝖠′

𝖡′ 𝐻 ∙ ∙ ∙

Circuit �̃�

We now consider the pure states generated by 𝐶 and �̃� when applied to 𝑛 + 2 qubits inititialized
to |0⟩. Let 𝖠′ and 𝖡′ be single qubit registers initialized to |0⟩. First, by applying 𝐶 to |0𝑛+2⟩, we
obtain the following state

|𝐶⟩𝖠𝖠′𝖡𝖡′ =
1√
2
(|0⟩𝖠 ⊗ |EPR⟩𝖠′𝖡′ ⊗ |𝐶⟩𝖡 + |1⟩𝖠 ⊗ |EPR⟩𝖠′𝖡′ ⊗ |𝐷⟩𝖡).

Moreover, by applying �̃� to |0𝑛+2⟩, we obtain the state

|�̃�⟩𝖠𝖠′𝖡𝖡′ =

⎛⎝ ∑︁
𝑐∈{0,1}

|𝑐⟩⟨𝑐|𝖡′ ⊗ �̄�𝑐
𝖠𝖡

⎞⎠ ⎛⎝ ∑︁
𝑏∈{0,1}

|𝑏⟩⟨𝑏|𝖡′ ⊗ (𝐶†)𝑏𝖠𝖡

⎞⎠ |𝐶⟩𝖠𝖠′𝖡𝖡′ .

Let us now define density operators

𝜌𝖠𝖠′𝖡𝖡′ = |𝐶⟩⟨𝐶|𝖠𝖠′𝖡𝖡′ and 𝜎𝖠𝖡𝖡′ = |�̃�⟩⟨�̃�|𝖠𝖠′𝖡𝖡′ .

Because |𝐶⟩ and |𝐷⟩ are orthogonal, the reduced states 𝜌𝖠𝖠′ and 𝜎𝖠𝖠′ satisfy

𝜌𝖠𝖠′ = 𝜎𝖠𝖠′ =
id𝖠𝖠′

4
.

By Uhlmann’s theorem there exists a unitary �̃� acting on registers 𝖡′𝖡 such that |�̃�⟩ = (id𝖠𝖠′ ⊗
�̃�𝖡′𝖡) |𝐶⟩. In particular, the unitary �̃� satisfies

�̃� |0⟩𝖡′ |𝐶⟩𝖡 = |0⟩𝖡′ |𝐶⟩𝖡
�̃� |0⟩𝖡′ |𝐷⟩𝖡 = |0⟩𝖡′ |𝐷⟩𝖡
�̃� |1⟩𝖡′ |𝐶⟩𝖡 = |1⟩𝖡′ |𝐷⟩𝖡
�̃� |1⟩𝖡′ |𝐷⟩𝖡 = |1⟩𝖡′ |𝐶⟩𝖡 .

Hence, �̃� acts as the controlled-𝑈 operator of the form

�̃� =
∑︁

𝑐∈{0,1}

|𝑐⟩⟨𝑐|𝖡′ ⊗ 𝑈 𝑐𝖡 ,

where 𝑈 is the swapping unitary from before. Therefore, we can use the following cir-
cuit to perfectly distinguish between |𝐶⟩+|𝐷⟩√

2
and |𝐶⟩−|𝐷⟩√

2
with a single call to the oracle for
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DistSuccinctUhlmann1 with respect to the circuits 𝐶 and �̃� and the state |+⟩ ⊗ |𝐶⟩±|𝐷⟩√
2

.

|0⟩ 𝐻 ∙ 𝐻 0/1

|𝐶⟩±|𝐷⟩√
2

𝑈

10.3 Open problems

We conclude with some open problems related to the physics-inspired applications considered in
this section.

Open Problem 25. Does the complexity of any of the information processing tasks discussed in
this paper (e.g., compression) have any ramifications for holography or models of quantum gravity?
May [May19] has recently suggested that information tasks performable in the bulk are also per-
formable on the boundary of the AdS/CFT correspondence. Does this correspondence also preserve
the complexity of the task?

Open Problem 26. What is the complexity of InterferenceDetection? Can we argue that it
is hard for some unitary complexity class? For example, can we use the equivalence in Theorem 10.5
to argue that DistSuccinctUhlmann1 reduces to InterferenceDetection, thereby rendering
the two tasks equivalent?

Open Problem 27. What is the complexity of InterferenceDetection with states drawn
from some other state complexity class (e.g., a state complexity analogue of 𝖰𝖬𝖠 or 𝖲𝖹𝖪)?
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