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Quantum state learning

Typical set up:
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Product state learning

Task: Learn a classical description of a product state.

Algorithm: Do state tomography on every register and output the
tensor product the reduced states.
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Product state learning

Consider the following input:

V1 —€|0™) + e|+")

Close to all 0’s (product state), but every marginal isn’t quite |0).



Product state learning

Moral: Even a little bit of misclassification error can change the nature
of quantum state learning problems.
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Agnostic quantum state learning

Given a model class C and copies of an arbitrary quantum state, output
the description of the closest state in C to the state.

(C,p®™) - argmax (P|ply)
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Agnostic quantum state learning

Given a model class C and copies of an arbitrary quantum state, output
the description of the closest state in C to the state.

(C.p®") = I¢) € C: max Wlply) —(plplg) < e

If you don’t care about runtime, shadow tomography solves this in
O(n -log(|C|) - €=*) samples.



Agnostic quantum state learning

Given a model class C and copies of an arbitrary quantum state, output
the description of the closest state in C to the state.

(C.p®") = I¢) € C: max Wlply) —(¢plplg) < e

Surprisingly, few computationally efficient algorithms exist, even for
simple families like product states!



Learning the closest product state

Main result: We provide an algorithm for agnostic learning of product
states that has sample complexity and time complexity that is

poly (&)
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Learning the closest product state

We can’t use the fact that the input is separable, but

Given a state p has fidelity at least % with some product state.

1. The reduced states of p have fidelity at least % with some product
state too.

2. There are at most 2 orthogonal product states that have fidelity
larger than % with p, and all of its reduced states.



Learning the closest product state

These observations motivate the following main loop:

For k from 1 through n:
Given a net {r;} for first k registers ({r; |p[k] |7;) = % and (ni|nj) =~ (),

Find a net for k+1 registers.
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Learning the closest product state

High level algorithm:
1. Searchin a small ball around |7;) @ | +1) (the root candidate).
2. For a state with high fidelity with p.

3. That is far from other good candidates we found.

The remaining technical challenge will be turning our objective into a
low-degree polynomial and then optimizing that polynomial.



Our algorithm:

1. Search in a small ball around the root candidate.
D, For a state with high fidelity with p.
3 Thatis far from other good candidates we found.
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Our algorithm:

1. Search in a small ball around the root candidate.
D, For a state with high fidelity with p.
3 Thatis far from other good candidates we found.

Learning the closest product state

First rotate so that our root candidate is all O’s.
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Our algorithm:
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Learning the closest product state

Our algorithm:

1.
2;

3

Search in a small ball around the root candidate.
For a state with high fidelity with p.
Thatis far from other good candidates we found.

Then the product state ball around |0%*1) will be almost entirely

supported on low Hamming weight strings.

/ Root candidate
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Our algorithm:

1. Search in a small ball around the root candidate.
D, For a state with high fidelity with p.

3 Thatis far from other good candidates we found.

Learning the closest product state

Then the product state ball around |0%*1) will be almost entirely
supported on low Hamming weight strings.

/ Root candidate
/ A nearby candidate
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The “quantum part” of the algorithm will be to do tomography on the
low-weight restriction of the input p.



Our algorithm:

1. Search in a small ball around the root candidate.
D, For a state with high fidelity with p.
3 Thatis far from other good candidates we found.
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Maximizing fidelity # maximizing the following polynomial
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Our algorithm:

1. Search in a small ball around the root candidate.
D, For a state with high fidelity with p.
3 Thatis far from other good candidates we found.

Learning the closest product state

Maximizing fidelity # maximizing the following polynomial
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Low Degree!
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Improvements In some settings
1. Very high fidelity (= %)
2. Finitely many, far apart, choices per register

3. Polynomial bond-dimension MPS
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Even more efficient algorithms?

Our algorithm is only polynomial time when € is a constant.

Is there an algorithm that runs in polynomial time when € is small?

1

Not unless NP € BQP (if € =
ot unless QP (if € oy ()

).

Why? Turns out the connection to tensor optimization goes both ways.



